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1 INTRODUCTION 111 Introdu
tionThe Surf-Hippo neuron simulator is used to study morphologi
ally and biophysi
ally detailed 
ompartmentalmodels of single neurons and networks of neurons. Surf-Hippo allows ready 
onstru
tion of 
ells and networksusing built-in fun
tions and various anatomi
al �le formats (Neurolu
ida, NTS and others). Surf-Hippo is apubli
 domain pa
kage, written in Lisp, and runs under Unix and Linux.Cell models may have 
ompli
ated 3-dimensional dendriti
 trees with distributed non-linearities andsynapti
 inputs driven by arbitrary inputs or other 
ells. The number of 
ir
uit nodes (
ell 
ompartments)is in pra
ti
e limited by the memory in the ma
hine; simulations with thousands of nodes are routine. Theretention of XYZ 
oordinates for ea
h 
ir
uit node may be exploited, for example, by simulations whi
huse spatially-
oded input, or with network simulations where synapti
 
onne
tivity is de�ned by spatialproximity. Channels (Hodgkin-Huxley, an extended Hodgkin-Huxley model (Borg-Graham, 1991, 1999),Markovian (Borg-Graham, 1999), and others), synapses (event-driven, voltage-dependent, light-dependent,and others), 
urrent and voltage sour
es may be added at arbitrary lo
ations within a neuron. Stationaryor moving two dimensional input (e.g. light, for retinal (Borg-Graham and Grzywa
z, 1992; Borg-Graham,2001) or visual 
ortex (Gaz�eres et al., 1998) simulations) is also provided. Multi-
ompartment 
on
entrationsystems are provided for modelling me
hanisms su
h as 
al
ium-dependent pro
esses.Surf-Hippo has an extensive graphi
al user interfa
e (GUI), in
luding menus, 3D graphi
s of dendriti
trees (with point-and-
li
k measurement, examination and modi�
ation of 
ir
uit elements), and data plot-ting (reformatable, with mouse-oriented measurement). Publi
ation quality posts
ript �les of all graphi
aloutput are easily generated. Data �les may also be saved for analysis with external tools. Surf-Hippo al-lows automati
 saving of edited model parameters into �les whi
h are both loadable and human readable, afeature whi
h helps to avoid errors in saving results during a simulation session.For integrating the 
ir
uit equations, Surf-Hippo uses a variant of the Crank-Ni
holson method des
ribedby Hines (1984; Borg-Graham, 1999, see Se
tion 35). A major di�eren
e in the method used by Surf-Hippo isa variable time step option, where step size is adjusted a

ording to an estimate of the linear trun
ation errorfor all state variables (e.g. node voltages, 
hannel parti
les). The adaptive time step 
an give mu
h fasterrun times for typi
al simulations, with the option of verifying sele
ted results using the more 
onservative�xed time step integration. Another di�eren
e is that Surf-Hippo allows for either ideal or non-ideal voltage
lamp at arbitrary nodes in the 
ir
uit.A more detailed referen
e for many of the 
ellular me
hanisms available in Surf-Hippo may be found inBorg-Graham, 1999.1.1 Motivations, and Why Lisp?In general, the appli
ation of Surf-Hippo overlaps pa
kages su
h as GENESIS (Bower and Beeman, 1994)and NEURON (Hines, 1992), as well as several other simulators designed for the 
omputational neuros
ien
e
ommunity (De S
hutter, 1992). The fa
t that Surf-Hippo is the only 
omplete system written in Lisp hasat least the following advantages.To begin with, the ne
essity for the numeri
al analysis of the nonlinear dynami
al systems that 
hara
-terize 
ompartmental neuron models means that formal veri�
ation of even moderately 
ompli
ated neuronmodels is not possible. A pra
ti
al approa
h to veri�
ation is by the 
ross-validation of models using indepen-dent tools, e.g. simulators written in di�erent languages and with major or minor di�eren
es in algorithms.Thus, in an ideal world (someday!) neuron models will be evaluated with more than one software pa
kage.Another advantage follows from the ability of Lisp to readily handle both symboli
 as well as numeri
representations and relationships. Formulation of 
omplex models of physi
al systems - of whi
h the brainis perhaps the 
anoni
al example - is by ne
essity a symboli
 task. Thus, a

ess to model 
omponentsin Surf-Hippo is quasi obje
t-oriented. For example, a large family of fun
tions are based on the 
on
eptof 
ir
uit elements, whi
h apply to di�erent types of physi
al models (somas, dendriti
 segments, 
hannels,parti
les, 
hannel types, synapses, et
.; see Se
tion 4). Coupled with the natural language-like syntax of Lisp,this makes for extremely eÆ
ient writing of model 
onstru
tion and analysis, without demanding a highlysophisti
ated knowledge of Lisp by the user. Simulation s
ripts written by the user, a ne
essity for seriousparameter sear
hing, are also in Lisp, whose 
exible and powerful syntax is arguably more transparent thanmost other languages.



1 INTRODUCTION 12Evaluation of those models, on the other hand, is a numeri
al task. Despite its 
exibility, the numeri
alperforman
e of Lisp 
an be similar to C or Fortran. Our results using the Rallpa
k ben
hmark suite (Bhallaet al., 1992) show that the speed and a

ura
y of Surf-Hippo is 
omparable to GENESIS and NEURON (seeSe
tion 35.14).Lisp has the advantage that the user 
ommuni
ates dire
tly with the Lisp interpreter environment, andthus has 
omplete a

ess to all 
omponents of a simulation. In pra
ti
e, it is often 
onvenient to move inand out of the Surf-Hippo GUI loop and a

ess simulation data dire
tly from the Lisp interpreter. The dataanalysis and graphi
al 
apablities of Surf-Hippo are suÆ
iently sophisti
ated so that we use this simulatorfor working with real physiologi
al data (and for dire
tly 
omparing that data with simulation data).Another advantage of Lisp is that all fun
tions de�ned in the system may be exe
uted from the inter-preter either individually or within s
ripts, whi
h makes for a very 
exible working environment. New 
ode(in
luding bug �xes) may be (in
rementally) 
ompiled and used as needed, without re
ompiling the entireexe
utable. These features, plus those su
h as the integrated do
umentation of Lisp and 
exibility regardingtypes, makes the development and maintenan
e of a large system like Surf-Hippo mu
h more eÆ
ient.1.2 Surf-Hippo is a Lisp ProgramSurf-Hippo is loaded as an integral part of a 
omplete, running Lisp, and intera
tion with Surf-Hippo, atleast initially, is a

omplished by typing dire
tly to Lisp, spe
i�
ally at the so-
alled Lisp top level (seeSe
tion 2.1). This intera
tion is made through the \Lisp window" (alternatively, the \Lisp interpreter" or\Lisp Listener"), a text window that the Lisp pro
ess uses as standard output and input, and that displayssome sort of:lisp-prompt> (some-stuff)or * (some-stuff)This is in 
ontradistin
tion to:unix-prompt>In this manual, we will generally assume that the lisp-prompt> is \*" (default for CMUCL). Stri
tlyspeaking, when you enter 
ommands dire
tly to Lisp, you are 
ommuni
ating with the Lisp interpreter (theLisp read-eval-print loop) via the appropriate window, e.g. a terminal window, an Ilisp ema
s bu�er (seeSe
tions 36 and 37.3), et
.It is important to emphasize that essentially all the synta
ti
al rules for Surf-Hippo fun
tions, ma
ros,
onstants and variables are the same as for Lisp - Surf-Hippo does not use some meta-language distin
t fromLisp. A running Surf-Hippo system is thus a Lisp system, onto whi
h a large set of additional fun
tions,variables and other de�nitions have been loaded. The overall dire
tory stru
ture of the Surf-Hippo system,in
luding sour
e 
ode, do
umentation and data dire
tories, among others, is des
ribed in Se
tion 28.3.1.3 Conventions in this Manual, and a Miniature Lisp LessonIn this manual we will use typewriter style for examples of input typed dire
tly to Lisp, for Lisp output,for program sour
e 
ode, and for Lisp symbols. Lisp symbols may refer to de�ned fun
tions, ma
ros, modeltypes, or variables. A given symbol 
an have multiple de�nitions, where the appropriate meaning is takena

ording to the synta
ti
al environment. Various de�ned Surf-Hippo symbols are referen
ed here, displayedin a format that indi
ates their de�nition as fun
tions, ma
ros or variables, and lists, as appropriate, theirarguments or values. For the full do
umentation of the Surf-Hippo fun
tions, ma
ros and variables of interestto users, see the Surf-Hippo Referen
e Manual. For a further introdu
tion to Lisp, see Appendix A.There is a distin
tion between Lisp strings and Lisp symbols. Strings, whi
h are framed by double quotes,are a
tually sequen
es of (
hara
ter) data, just like a Lisp list or an array represents a sequen
e. Lists areframed by parentheses, and Lisp arrays are printed out framed by parentheses and pre
eded by a #. Thus,



1 INTRODUCTION 13"A string with 27 
hara
ters"(A LIST WITH 5 MEMBERS)#(AN ARRAY WITH 5 MEMBERS)Comments are pre
eded by a semi
olon, thus:(+ A (* B C) D) ; Add the values of A and D to the produ
t of B and CThe list is the basi
 (but not only!) type of stru
ture in Lisp. Lists may represent data, for example alist of voltage values, or a list of simulation times. Lists also represent operations of some sort or another,based on in�x notation. In this 
ase the list represents some expression, where the �rst element of the list istaken as the operator (typi
ally a fun
tion) that is applied to the remaining members of the list. Expressionpre
eden
e is unambiguous with the in�x notation of Lisp, sin
e everything is evaluated from the inside outin nested lists: e.g. (+ A (* B C) D) is A+BC +D.All the elements that de�ne a 
ir
uit are of one model type or another. Ea
h model type is asso
iatedwith a de�ned data stru
ture and other 
hara
teristi
s, in
luding 
ertain fun
tions and variables. Somemodel types have an asso
iated element type (whi
h is itself a model type). For example, ea
h synapse in a
ir
uit is an instan
e of the SYNAPSE model, whose 
hara
teristi
s are de�ned by a synapse type (whi
h isan instan
e of the SYNAPSE-TYPE model).Lisp variables may be either global, meaning they may be referen
ed (and altered) by di�erent fun
tionsat di�erent times, or they may be lo
al, relevant only during the evaluation of some fun
tion. By 
onvention,global variables are framed with asterisks, e.g. *USER-STOP-TIME*. Various important prede�ned global vari-ables of Surf-Hippo, su
h as *USER-STOP-TIME*, are des
ribed throughout this manual, or in the Referen
eManual.Sometimes, one is interested in the value asso
iated with (bound to) a symbol (if any), while other timesit is the symbol itself whi
h is needed. The �rst 
ase requires that Lisp "evaluate" the symbol. For the se
ond
ase, in order to prevent evaluation, the symbol must be pre
eded by a quote (note that a leading quoteprevents evaluation of any Lisp form, not just a symbol). For example, if the symbol *USER-STOP-TIME* isentered into Lisp with a leading quote, then Lisp just returns the symbol, without evaluating it:* '*user-stop-time**USER-STOP-TIME*Note that the printed representation of an unevaluated (quoted) symbol does not in
lude the leading quote.If the symbol is read by Lisp without the quote, then it is evaluated (a

ording to the 
urrent 
on-text, whi
h in this 
ase impli
ates it as a variable), and its 
urrent value is returned. Thus, the symbol*USER-STOP-TIME* is normally bound to some number:* *user-stop-time*100.0If we forget what some symbol is supposed to mean, Lisp provides the DESCRIBE fun
tion:* (des
ribe '*user-stop-time*)*USER-STOP-TIME* is an internal symbol in the SURF-HIPPO pa
kage.It is a spe
ial variable; its value is 100.0.100.0 is a SINGLE-FLOAT.Spe
ial do
umentation:The time to end the simulation, in millise
onds.If a symbol is evaluated but does not have an asso
iated value, then an error is returned (see below aboutBugging Out). Setting the value of a variable is done with the SETQ form:* (setq *user-stop-time* 200.0)200.0Some variables are used as boolean values, and a

ordingly the values T and NIL represent true or false,respe
tively:



1 INTRODUCTION 14* (setq *use-fixed-step* T)NILNote that in fa
t any value other than NIL is "true" in a boolean evaluation - using T tends to emphasizethat a given variable is intended only as a boolean variable (the symbols T and NIL are reserved symbols inLisp, whose meanings are immutable).Lisp symbols may in
lude a leading 
olon, in whi
h 
ase the symbol is 
alled a keyword. Keywords areoften used to denote spe
i�
 arguments in fun
tion de�nitions (see below). Keyword symbols are neverevaluated - the 
olon prevents evaluation just like the quote does for other Lisp symbols and forms (thisalso means that keywords 
annot be used as variables). The printed representation of a keyword, however,retains the 
olon:* :mumble:MUMBLENote as well that symbols, with or without leading 
olons, are by default 
ase-insensitive in Lisp, and arerepresented internally by with upper-
ase 
hara
ters.Lisp fun
tions 
alls are written as lists with the general format of:(fun
tion-name arg0 arg1 ...)where the number and format of the arguments is given by the fun
tion de�nition. Fun
tion (or ma
ro)arguments referen
ed within the text will be written in CAPITALS. Fun
tion arguments in
lude requiredarguments, optional arguments and keyword arguments. Required arguments, if any, always immediatelyfollow the fun
tion name, and must always be in
luded. Optional arguments, if any, 
ome next, and theymay be in
luded as desired. Keyword arguments in a fun
tion 
all must be pre
eeded by the keyword itself,and the keyword keyword-value pairs may o

ur in any order after any required or optional arguments. Forexample:foo bar baz &optional (boo 14) &key (bee :ignore) bop [Fun
tion℄Here FOO is the name of a fun
tion, with arguments BAR, BAZ, BOO, BEE and BOP. BOO is an optionalargument of FOO, with a default value of 14, and BEE and BOP are keyword arguments, whose default valueis :IGNORE and NIL. The arguments BAR, BAZ must always appear in this order, and BOO, if in
luded,must be next. The keyword arguments follow, if in
luded. Thus, the following would all be legal formats for
alling FOO:(foo t 3.14159)(foo t 3.14159 11)(foo t 3.14159 11 :bee :normalize :bop 'sphere)(foo t 3.14159 11 :bop 'sphere :bee :normalize)Although in the fun
tion des
ription above keywords (su
h as BOP) do not in
lude a 
olon, in an a
tualfun
tion 
all of FOO the BOP argument (if used) would be pre
eeded by the :BOP keyword. In this examplethe symbol 'SPHERE is used as the value of the keyword argument :BOP. It in
ludes a leading quote be
auseit is desired to pass the symbol itself to the fun
tion, not any value bound to it. Note also that keywordsymbols (here :NORMALIZE) may be used as fun
tion arguments themselves, even for keyword arguments,depending on what a fun
tion expe
ts.Referen
es will be made in this manual to sour
e 
ode that 
omes with the Surf-Hippo distribution.Non-essential 
ode, su
h as optimization forms (e.g. lines starting with (de
lare (optimize ...))), ortype de
larations (e.g. (the sf foo)), will usually be left out for 
larity and thus examples may not exa
tlymat
h the original sour
e. For example, Lisp does not require type de
larations (see Se
tion 1.3.2), but theymay be very important to generate eÆ
ient 
ompiled 
ode. In fa
t, a key advantage of Lisp is that programsmay be written with hardly any attention to su
h details, su
h that prototyping (and most sorts of usefulsimulation s
ripts) 
an be written "qui
k and dirty".Cir
uit elements in Surf-Hippo are referen
ed either in terms of their print names or the stru
ture pointers,depending on the 
ontext. Many Surf-Hippo fun
tions are written to allow either te
hnique for 
onvenien
e(see Se
tion 4). Element names are either strings, symbols, or numbers:



1 INTRODUCTION 15"Hippo-1"`CA1234The printed representation of data stru
tures are all something like this:<Segment Hippo-1: prox node Hippo-soma><Cell Type CA1><Synapse 234: type AMPA-AUTO>Thus, and surrounded by "<>", is the type of data stru
ture, followed by the name of the stru
ture and,possibly, some minimal information. The printed representation of any data stru
ture is intended for humanreadability only. Surf-Hippo won't understand it if you try to enter something like "<Segment Hippo-1:prox node Hippo-soma>", for example in order to referen
e a parti
ular data stru
ture (here a synapse).On the other hand, Surf-Hippo allows you to referen
e data stru
tures using their names with the ELEMENTfun
tion, des
ribed in Se
tion 4, for example (element "Hippo-1"), (element `
a1) or (element 234).Finally, from time to time we shall refer to 
ir
uits and and me
hanisms that are in
luded in the Surf-Hippo distribution. One example that will be used often is a single 
ell model of a hippo
ampal pyramidal
ell (Borg-Graham, 1999) that may be referen
ed in the text as simply the "Working Model" (the Lispfun
tion that sets this model up is WORKING-HPC).1.3.1 Bugging Out and Debugging in the Lisp EnvironmentIt is unusual to 
rash Lisp 
ompletely - more often than not if an error is en
ountered you will �nd yourselfin the Lisp Debugger (see Appendix B). The Debugger provides many tools for dis
overing the pre
isesour
e of a problem. Often, the Debugger 
onserves program state, allowing for a 
omplete re
overy or even
ontinuation from the error 
ondition. If for one reason or another (usually by mistyping something) you�nd yourself in the Debugger, in many 
ases it may be suÆ
ient to simply abort and return to the top levelby typing "q". For example, as mentioned above, an error is returned when a unbound symbol is evaluated:* grokError in KERNEL::UNBOUND-SYMBOL-ERROR-HANDLER: the variable GROK is unbound.Restarts:0: [ABORT℄ Return to Top-Level....0℄ q*Aborting to Top-Level allows you to 
ontinue without restarting the entire system. Otherwise, you 
an usethe powerful diagnosti
 information available with the Debugger to �nd the problem (see also Se
tion 27.2).Note: avoid destroying a Surf-Hippo window with the X window manager: instead, type Control "d" overthe window (see Se
tion 38.1).1.3.2 Number TypesLisp allows varying degrees of type spe
i�
ation, in parti
ular for numbers. At one extreme, usually for thesake of eÆ
ien
y, many Surf-Hippo fun
tions restri
t the type of a numeri
 parameter (e.g. �xnum, single ordouble 
oat). However, for most fun
tions that you will have o

asion to use, any ne
essary type 
onversionis done automati
ally (e.g. with respe
t to a numeri
 fun
tion argument, a number is a number, rather thanhaving to be a single 
oat, integer, et
.). This will be seen in many of the examples in this manual where, forexample, fun
tion 
alls are shown with integer values even though the values used internally in the fun
tionwill be 
oating point numbers.



1 INTRODUCTION 16If for some reason a type violation is en
ountered the Debugger will be invoked automati
ally: In most
ases you 
an then ba
k up the exe
ution sta
k to identify the o�ending fun
tion 
all or variable assignment(see Appendix B). Depending on whether the fun
tion has been 
ompiled with strong optimization (often the
ase if the argument types are spe
i�ed), the inital Debugger message may be quite 
rypti
: the Debuggerba
ktra
e will indi
ate only the fun
tion whi
h punted, without expli
it information as the pre
ise violation(this is usually manifested as a "segmentation violation"). The key in these 
ases is to DESCRIBE the o�endingfun
tion in order to see what it expe
ts, or if ne
essary examine the fun
tion sour
e 
ode (whi
h will beindi
ated by DESCRIBE).1.3.3 Unix and Lisp EnvironmentIn general, referen
es in this manual to the Unix environment will assume that 
sh is the shell. Note thatLinux implementations usually use bash instead. In any event, appropriate modi�
ations should be madea

ording to the shell in use.Although Surf-Hippo may be run dire
tly from a Unix terminal window, it is mu
h more 
onvenient touse the ILisp mode under Ema
s. See Se
tions 36 and 37.3 for more information.We shall assume that the Surf-Hippo system is installed under a dire
tory 
alled "surf-hippo" - thisdire
tory may be referred to as either the top-level Surf-Hippo dire
tory or the Surf-Hippo home dire
tory.Note that the name is arbitrary; it only must mat
h the setting of the SURFHOME environment variable(see Se
tion 2.10). By default, unless the full pathname is given, in this manual any referen
es to dire
torieswill assume that they are under the Surf-Hippo home dire
tory. That is, "...(as found in 
ir
uits/)..." refersto the dire
tory "surf-hippo/
ir
uits/". Likewise, �lenames without any dire
tory referen
e are assumed tobe in the surf-hippo/sr
/sys/ dire
tory (the system sour
e �le dire
tory) (see also Se
tion 28).1.4 History and A
knowledgementsThe initial motivation for Surf-Hippo 
ame from the neuron simulation pa
kages BULLFROG and NEURON(not the same as that of Mi
hael Hines), developed by Christof Ko
h and Patri
k O'Donnell on Symboli
sLisp Ma
hines at the MIT AI Laboratory. A new simulator, HIPPO (as in hippo
ampus), was developed onthe Lisp Ma
hine, and later Surf-Hippo was written with some features based on the SURF (as in 
ir
uit nodeWAVEforms) 
ir
uit simulator, written by Don Webber, then of the VLSI CAD Group at the Universityof California at Berkeley. The name "Surf-Hippo" has the advantage of not being already used in other
ommon 
ontexts, e.g. bibli
al or biologi
al, nor is it an attempt at a tortured a
ronym. The PLOT-HACKname and many of the ideas in the plot utilities that I wrote for Surf-Hippo were inspired by Patri
k. Surf-Hippo was developed �rst within the former Center for Biologi
al Information Pro
essing (Tomaso Poggioand Ellen Hildreth, dire
tors), Department of Brain and Cognitive S
ien
es, MIT. This proje
t 
ontinuesat the Unit�e de Neuros
ien
es Integratives et Computationnelles, Institut Federatif de Neurobiologie AlfredFessard, CNRS, Gif-sur-Yvette, Fran
e.We would greatly appre
iate reprints or pointers to work that uses Surf-Hippo. Please use the addressfound in the surf-hippo/lib/SNAIL-MAIL �le or lyle�
ogni.iaf.
nrs-gif.fr.To 
ite this pa
kage, please use:Graham, L., The Surf-Hippo Neuron Simulation System, v3.0, 2002(http://www.
nrs-gif.fr/iaf/iaf9/surf-hippo.html)With thanks to the Garnet group at CMU - the system organization for Surf-Hippo is derived dire
tlyfrom Garnet, and to the CMUCL group at CMU. The work of both groups 
ontributed enormously to therealization of this proje
t. Also a tip 'o the hat to the CMUCL net 
ommunity and their ongoing help. Iwould also like to a
knowledge the important 
ontributions to this proje
t from Leonardo Topa (MIT), CyrilMonier (CNRS) and Ni
olas Gazeres (CNRS, who also 
ontributed to Appendix A).



2 RUNNING SURF-HIPPO 172 Running Surf-HippoWe will know des
ribe the basi
s for running Surf-Hippo. We assume that Surf-Hipp is loaded and running,and you are 
ommuni
ating with Lisp via the shell or Ema
s ILISP bu�er that is displaying the Lisp prompt.If not, refer to Se
tion 36.2.1 Surf-Hippo Menus vs. the Top Level Lisp InterpreterAn important 
on
ept is that intera
tions with Surf-Hippo may be either via 
ommands (that is Lisp fun
-tions) entered dire
tly into the Lisp interpreter or via the Surf-Hippo menu system, and that one may swit
hba
k and forth between the menus and the top level as needed. In general, there is no loss of "state" whenswit
hing between the modes, until you load in a new 
ir
uit.The Main Menu loop is invoked by the fun
tion SURF, and starts o� with the "Surf-Hippo Main Menu".While this loop is running, the interpreter is essentially "turned o�" - there will be no response when typingsomething into the Lisp window. Hitting OK from the "Surf-Hippo Main Menu" with no other sele
tionsreturns 
ontrol to the interpreter.Menu-based operation is suÆ
ient for exploiting mu
h of Surf-Hippo, assuming that the appropriate
ir
uit des
riptions (from �les or fun
tions) are available. This means that the system may be used withonly a rudimentary knowledge of Lisp. For example, to run a simulation from the menus you 
li
k the \Runsimulation (immediately)" option on the \Surf-Hippo Main Menu".In 
ontrast, the full 
exibility of the system is realized when the user 
an write his or her own Lisp 
odeand swit
h ba
k and forth between intera
tion modes as needed. Using Surf-Hippo in interpretive mode,either by typing fun
tions dire
tly to the Lisp window or by loading Lisp �les (that in
lude the appropriatefun
tions), is ne
essary for parametri
 simulations, typi
ally 
entered on running individual simulations withthe fun
tion GOFERIT:goferit &optional (stop�time *user�stop�time*) [Fun
tion℄The exe
ution of GOFERITwill run the simulation for STOP-TIME millise
onds - if the optional STOP-TIMEargument is omitted then the 
urrent value of the global variable *USER-STOP-TIME* will be used.2.2 Windows, Menus and Help!As mentioned, during simulations or other evaluations (like the Main Menu loop) the Lisp interpreter andall Surf-Hippo windows will be "dead". For example, if there is a buried Surf-Hippo window is raised duringa simulation, the window will be blank until the simulation is �nished. This annoyan
e 
an be 
ir
umventedby temporarily interrupting the Lisp pro
ess (Se
tion 2.8).From time to time Lisp will stop what it is doing and run a \garbage 
olle
tion" (GC) for managing thememory spa
e. This will 
ause the system to appear dead until the GC is �nished (normally within a se
ondor so.Typing CONTROL-q over any Surf-Hippo output window will dei
onify and raise any a
tive menus.Destroying Surf-Hippo output windows is done by typing CONTROL-d with the mouse over the targetwindow. Note that text entry windows in the menus work similarily to Ema
s (Appendix F).For help on plot or histology windows, type "h" with the mouse over the window in question. If menus donot respond to the mouse, make sure that the Caps Lo
k key is OFF. If you are using Ema
s, help is foundby typing CONTROL-h in the Ema
s window. All Surf-Hippo Lisp fun
tions that the user would typi
allyuse have asso
iated do
umentation; the general way to see this is to use the DESCRIBE fun
tion, des
ribedin Se
tion 29 and Appendix A.7. Otherwise, the Surf-Hippo Referen
e Manual in
ludes all do
umentedfun
tions and variables. For typi
al error messages, bugs and other problems, see Se
tions 38 and 39 or theBugs se
tion in many of the se
tions. Typi
al Debugger messages will be made throughout the text, andthere is more dis
ussion in Se
tion B.2.3 Running Surf-Hippo From The MenusNow run the Surf-Hippo main menus by entering:



2 RUNNING SURF-HIPPO 18* (surf)** The Surf-Hippo Neuron Simulator, Version X.X **The "Surf-Hippo Main Menu" should now appear. If not, one possibility is that the X display Unix envi-ronment variable is pointing to another s
reen (see Se
tion 38.4).Start out by simulating a hippo
ampal a
tion potential with the buit-in fun
tion WORKING-HPC. Thefollowing sequen
e assumes that you are starting Surf-Hippo from s
rat
h (exit ea
h menu by hitting \OK"):1. From the \Surf-Hippo Main Menu", sele
t \Overall parameters, load 
ir
uit or �les"2. Sele
t \Load 
ir
uit fun
tion/�le"3. Sele
t \Catalog Fun
tion"4. Sele
t \WORKING-HPC"The Lisp window will show something like:Reading in 
ir
uit WORKING-HPC...Lo
ating segments...Cell HPC: 0 bran
h points and 5 segments pro
essed.And the \Surf-Hippo Main Menu" will reappear, now with the loaded 
ir
uit displayed at the bottom of themenu. To draw the 
ell:1. Sele
t \Histology"2. Just hit OK from the \Setting Up Cell Drawing" menuAfter the histology window appears, the \Surf-Hippo Main Menu" will reappear. Cli
k "OK" to return tothe Lisp 
ommand line. The following message will then appear in the Lisp window:Do you want to quit Lisp? (RETURN for NO, yes/YES for YES):Answering in the aÆrmative (not now!) will 
lose Lisp elegantly. Now set up the plotting and stimulus. You
an do this by point-and-
li
king on the histology window, or from the Main Menu loop, but for now, enterthe following from the 
ommand line:* (add-isour
e *soma*)<Current Sour
e HPC-soma-isr
>* (pulse-list *isour
e* '(10 25 1))NIL* (setq *user-stop-time* 100)100* (enable-element-plot *soma*)NIL* (enable-element-plot *isour
e*)NILNow go ba
k to the menus by typing the fun
tion:* (surf)and sele
t "Run simulation (immediately)". When the simulation is �nished the soma voltage and the 
urrentstimulus will be plotted in various plotting windows. The "Surf-Hippo Main Menu" will then reappear. Themain menu has a "Information management" option. This is a 
onvenient pla
e to save (ar
hive) the resultsof important simulations to �les. Simulations may be repeated on the loaded 
ell des
ription, or a new 
ir
uitmay be spe
i�ed.The loaded 
ir
uit may be modi�ed however you want with the appropriate menus, 
li
king the OKbutton when done with ea
h menu. For example, membrane elements in
luding sour
es, 
hannels, andsynapses may be added to the loaded 
ell(s) by 
hoosing lo
ations from a histology window (LEFT mouse),and then bringing up a menu for the 
hosen lo
ation (CONTROL-SHIFT-LEFT mouse).
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an try the other 
ir
uit fun
tions that are preloaded as part of the \Catalog Fun
tion" list mentionedabove. For example, to see a moderately 
ompli
ated simulation, try the built-in fun
tion STAR-AMACRINE-DS.In addition, there are several 
ir
uit model �les in the surf-hippo/
ir
uits/demos/ dire
tory, whi
hon the most part 
an be TOPLOADed dire
tly and run (some in
lude a GOFERIT, so the simulation runs onits own). For a 
olorful example, try:* (topload "/usr/lo
al/surf-hippo/
ir
uits/demos/
olorized-n120.lisp")For other 
ells with 
omplete detailed anatomy, try loading �les from the surf-hippo/anatomy/ dire
tory(the 
olorized-n120.lisp �le referen
es an anatomi
al �le here). For information about how these sorts of
ir
uit �les are made, see Se
tion 6. Some of these �les de�ne a 
ir
uit when they are loaded; others mustbe loaded, and fun
tions de�ned by them must then be invoked to a
tually load the 
ir
uit. See Se
tion 3for more information on building and adding to 
ir
uits.2.5 Result OutputUnless the global variable *KILL-ALL-OUTPUT* is T [default NIL℄, at the beginning and end of ea
h simulation,various 
ir
uit and simulation information may be printed out to the Lisp Listener (default), a spe
ialInformation Window, or a �le. For �le do
umentation, see Se
tion 20. Note that *KILL-ALL-OUTPUT* willalso suppress data plotting and automati
 data �le writing.2.6 Loading Cir
uit De�nitionsCir
uits are de�ned by either 
ompiled fun
tions, �les (see Se
tion 3), or 
ombinations whi
h 
an in turnreferen
e either fun
tions or �les (e.g. 
ompiled fun
tions whi
h load �les). Try simulating the 
ir
uit �lefile-hippo.lisp (
ir
uits/demos/dire
tory) by loading it from the menu sequen
e as before, but 
hoosinga �le as the 
ir
uit de�nition sour
e.In general, more 
ompli
ated 
ir
uits should be put into a DEFUN form and 
ompiled from Lisp, or the�le that de�nes the 
ell should be 
ompiled and the resulting binary version (e.g. .spar
f or .fasl �le) loadedwhen loading the 
ir
uit.For Lisp, sin
e they are interpreted as symbols fun
tion names may be entered in mixed 
ase (e.g.working-hp
, WORKING-hp
, working-HPC, et
.), while for �le names 
ase matters. For example, for the
ir
uit �le \fOo", the �le name must be entered as \fOo", not \FOO" or \foo", et
. If you enter in a fun
tionname that does not exist, the following error will be generated:Reading in 
ir
uit bogus-fun
tion-name...Error in KERNEL:%COERCE-TO-FUNCTION: the fun
tion BOGUS-FUNCTION-NAME is undefined.Restarts:0: [ABORT℄ Return to Top-Level.Debug (type H for help)(KERNEL:%COERCE-TO-FUNCTION BOGUS-FUNCTION-NAME)0℄If this happens, simply enter Q or 0 (ABORT) to the Debugger, and then enter (surf) to start things o�again.2.7 Element Library ParametersParameters for spe
i�
 membrane element models (
hannels, synapses, et
.) are generally found in thesr
/parameters/ dire
tory. Many of these parameters are taken from other published models. There are no



2 RUNNING SURF-HIPPO 20guarentees on the 
orre
tness of any of the parameters listed here; thus the original referen
es should alwaysbe 
he
ked. On the other hand numerous errors in the originals have been found - see 
omments in thevarious parameter �les. The general 
on
epts behind element parameter libraries are des
ribed in Se
tion 9.2.8 Interrupting The SimulationIt is often useful, espe
ially for long simulations, to 
he
k things out in the middle, or to gain a

ess to (orperhaps simply refresh) the output windows. As above, you 
an BREAK into the running simulation bytyping C-
 C-
 into the Lisp window. If desired, from the Lisp Debugger, enter the fun
tion SIM-OUTPUT tosee the result obtained so far:sim-output [Fun
tion℄For example: ...Starting transient solutionEnter C-
 C-
 !Interrupted at #x716DEB8.Restarts:0: [CONTINUE℄ Return from BREAK.1: Return NIL from load of "/usr/lo
al/surf-hippo/sr
/visual/j43ds.lisp".2: [ABORT ℄ Return to Top-Level.Debug (type H for help)(UNIX::SIGINT-HANDLER #<unavailable-arg> #<unavailable-arg> #.(SYSTEM:INT-SAP #xEFFFEC68))0℄ (sim-output)Total time points/iterations 13180/20379Simulation duration: 200.0 msFile /usr/lo
al/surf-hippo/data/j43d-11-5/11_12_1994/j43d-11-5-731552.info writtenDone.NIL0℄ 0Typing 0 to the Debugger resumes the simulation. Note that, a

ording to the \Restart" options, \0" wasentered to CONTINUE from the BREAK, as opposed to returning (ABORT) to the Lisp top level.Another fun
tion whi
h may be useful to �nd out the progress of the simulation is:print-simulation-stats &optional 
omplete [Fun
tion℄Here, various numeri
al parameters will be printed out as well if the optional COMPLETE argument is T.2.9 Customized SetupIf there is a �le named 
ustoms.lisp in either the user dire
tory (set by the shell variable SURFUSER-HOME), or in the Surf-Hippo lib dire
tory (a subdire
tory of the top level Surf-Hippo dire
tory, by defaultset by the shell variable SURFHOME), then this �le is loaded during the Surf-Hippo initialization. Thislisp �le 
an 
ontain various de
larations, fun
tion de�nitions, or dire
tives for loading other �les as needed
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ular environment. Another �le that is automati
ally loaded during initialization, if itexists, is pat
hes.lisp, found in the Surf-Hippo lib dire
tory. This �le 
an hold various bug �xes that maybe supplied for a parti
ular version of the 
ode.Che
k Se
tion 36 for more information on the setting of various environment variables.2.10 Referen
ing the Surf-Hippo Home Dire
tory and OthersFor loading a �le that is somewhere under the top-level Surf-Hippo dire
tory, you 
an use:load-surf-home-�le �lename [Fun
tion℄This fun
tion loads a FILENAME whi
h must be in the Surf-Hippo home dire
tory (as spe
i�ed by theglobal variable *SURF-HOME*, whi
h in turn is de�ned initially by the SURFHOME enviroment variable).For example, suppose the Surf-Hippo home was "/usr/lo
al/surf-hippo". In that 
ase, then(load-surf-home-file "sr
/hippo
ampus/warman-durand-yuen.lisp")will load the �le "/usr/lo
al/surf-hippo/sr
/hippo
ampus/warman-durand-yuen.lisp". A related fun
tion is(for a �le under the Surf-Hippo user dire
tory):load-surf-user-�le �lename [Fun
tion℄where the user dire
tory is spe
i�ed by the global variable *SURF-USER-HOME*, whi
h in turn is initiallyde�ned by the HOME enviroment variable.Finally, the global variable *SURF-USER-DIR* de�nes the default path where simulation data is stored.This variable is initially set by the value of the SURFUSERHOME enviroment variable, if de�ned; otherwise,*SURF-USER-DIR* is set to the HOME enviroment variable. On
e *SURF-USER-DIR* is de�ned, then thesubdire
tories \data" and \plot" are automati
ally 
reated. Note that if SURFUSERHOME has the samevalue as SURFHOME, then the relevant data and plot subdire
tories are found along with the standardSurf-Hippo dire
tories (see Se
tion 28.3).2.11 Quitting LispTo quit Lisp, you 
an answer aÆrmatively when exiting the main menu loop, as above, or you 
an use thefun
tion:* (quit)If ne
essary, typing C-
 C-
 into the Lisp window will usually interrupt Surf-Hippo, and put you into theDebugger. Avoid doing this in the middle of a GC, however, be
ause this hang the system. Alternatively(from ILISP), M-x pani
-lisp, followed by C-
 C-
, may be ne
essary.
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uit De�nitions - Fun
tions and FilesSee also Se
tion 17.3.1 What Makes A Cir
uitA "
ir
uit" is the ele
tri
al/
hemi
al representation that de�nes the di�erential equations simulated by theprogram. Normally, a 
ir
uit des
ribes one or more neurons, ea
h of whi
h has a soma, and, perhaps, adendriti
 tree 
onsisting of 
ompartments 
alled segments, and a variety of membrane me
hanisms may bein
luded with any anatomi
al 
ompartment.In Surf-Hippo, all individual parts of the 
ir
uit are 
alled \elements", ea
h of whi
h is represented by aspe
i�
 type of Lisp stru
ture obje
t.Referen
es in the do
umentation to \
ell elements" mean SOMA and SEGMENT stru
tures, and \membraneelements" CHANNEL, SYNAPSE, PUMP, BUFFER, ISOURCE, VSOURCE, CONC-INT (
on
entration integrators) stru
-tures (and others to be de�ned). Many elements in a 
ir
uit have an asso
iated element \type", in
luding
hannel types for 
hannels, synapse types for synapses, et
. The element type asso
iated with segmentsand somas is a 
ell type (and ea
h soma and segment is asso
iated with a 
ell stru
ture whi
h is itself an\element"). Ea
h loaded element in the 
iru
it The element system is des
ribed further in Se
tion 4.Cir
uit are de�ned by a series of Lisp forms (fun
tions or ma
ros) that may be grouped together in eithersome user-de�ned fun
tion, or in a Lisp �le (or �les).3.1.1 De�ning a Neuron Geometry by Anatomy Files or Expli
it Cell Element CreationCell morphology may be established by loading in a 
onverted anatomy �le (Se
tion 6), or by expli
itfun
tions that 
reate 
ell elements (Se
tion 5), in
luding:CREATE-SOMA (ne
essary)CREATE-CELL (usually taken 
are of by CREATE-SOMA)CREATE-SEGMENT CREATE-TREE SEGMENT-CHAIN TREE-CONTROL (optional)All 
ells require a 
all to CREATE-SOMA. Cell types and 
ells may be expli
itly de�ned, if ne
essary, with 
allsto CREATE-CELL-TYPE and CREATE-CELL. Dendrite geometries may be de�ned one segment at a time usingCREATE-SEGMENT, or by using CREATE-TREE or SEGMENT-CHAIN.3.1.2 Adding Membrane Elements to Segments and SomasAfter the 
ell morphology has been de�ned, the most general fun
tion for adding membrane elements (e.g.
hannels, synapses, sour
es, et
.) to the 
ell elements is with the fun
tion CREATE-ELEMENT (Se
tion 4.2).Loaded 
ir
uits may also be modi�ed using a histology window (see Se
tion 23); 
ell segments or somas maybe sele
ted with the mouse and various membrane elements may be added/deleted/edited as desired.3.2 Loading the Cir
uit De�ning Fun
tion or FileLoading a 
ir
uit fun
tion or a 
ir
uit �le are options given by the 
ir
uit input menu sequen
e. Otherwise,from the interpretor, one uses the general 
ir
uit loading ma
ro TOPLOAD (des
ribed below), whi
h 
an handle
ir
uits de�ned by �les or fun
tions.3.3 TOPLOAD - The Basi
 Wrapper for Cir
uit LoadingThe TOPLOAD ma
ro is used for loading 
ir
uit des
riptions:topload &body body [Ma
ro℄Normally TOPLOAD initializes and 
lears everything before loading a 
ir
uit, unless it is 
alled re
ursively(see below) or if the global variable *INITIALIZE-BEFORE-NEXT-CIRCUIT* is nil (default T). TOPLOAD triesto �gure out what the forms in BODY refer to, whi
h 
ould in
lude a �le name, the name of a 
ompiled
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tion, or a set of expli
it lisp forms that de�ne a 
ir
uit. The global variables *CIRCUIT-SOURCE*,*CIRCUIT-FILENAME* and *CIRCUIT* are set a

ordingly, and the 
ir
uit is loaded. If the BODY refers toa 
ompiled fun
tion, then this 
an be either a symbol, e.g.:* (topload 'working-hp
)a string, e.g.:* (topload "working-hp
")or a regular Lisp form (e.g. a fun
tion form with appropriate arguments):* (topload (working-hp
 :name "foo"))If BODY refers to a �le, then this must be a string with the 
omplete pathname, e.g.:* (topload "/usr/lo
al/surf-hippo/
ir
uits/demos/file-hippo.lisp")The C shell "~/" 
onvention for the user's home dire
tory will be parsed by TOPLOAD (note, but not by thestandard Lisp fun
tion LOAD): thus, if the home dire
tory (given by the global variable *SURF-USER-HOME*)is "/home/", then the pre
eeding 
ommand 
ould also be:* (topload "~/surf-hippo/
ir
uits/demos/file-hippo.lisp")In addition, TOPLOAD 
an �nd �les that are under the 
urrent value of *CIRCUIT-DIRECTORY*. Thus, if*CIRCUIT-DIRECTORY* was equal to "/usr/lo
al/surf-hippo/
ir
uits/demos/", then* (topload "file-hippo.lisp")would also work. See also Se
tion 17. Here is an example of a TOPLOAD form in whi
h the BODY is a LOOPform that de�nes two 
ells:(topload(loop for i from -2 to 2 by 4for name in '(a b) do(let ((*
ell-name-suffix* name)))(move-
ell (dead-hippo) (list (* i 100.0) 0.0 0.0))))))In this 
ase the fun
tion DEAD-HIPPO returns the 
reated 
ell whi
h is then moved by MOVE-CELL (seeSe
tion 5.2) to the 
oordinates given by the se
ond LIST argument. Unique 
ell and segment names areensured by lo
al binding of the global variable *CELL-NAME-SUFFIX*, (see Se
tions 5.1, 6.2 and 27.4).TOPLOAD may also be used re
ursively. This may be useful when a part of the 
ir
uit de�nition is givenin an anatomy �le, or a 
ir
uit is 
omposed of several other �les whi
h might in
lude TOPLOAD forms so thatthey may be used independently. For example, a 
omplete 
ir
uit fun
tion 
ould be:(defun adp-
12861 ()(topload "~/surf-hippo/anatomy/mis
/
12861.
a1.lisp")(std-setup) ; Add somati
 
urrent sour
e and plot soma voltage.(pulse-list *isour
e* '((1.0 2.9 1.0) (2.9 3.30 -1.2))) ; Set two pulse stimulus.(setq *pwl-isour
e-di-dt* 10.0 ; Make the 
urrent sour
e a little sluggish.*absolute-voltage-error* 0.001 ; We want high resolution for these tra
es.*save-data-step* 1 ; See every step of the simulation.*user-stop-time* 12.0))Here, the 
all to TOPLOAD loads a 
ompiled 
ir
uit anatomy �le that was generated by nts
able and thenedited to set both the 
ell type and name to "
12861.
a1" (see Se
tion 6.2). Files generated by nts
able andthen loaded by TOPLOAD (or by the input 
ir
uit menu) 
reate 
ell soma(s) whose names are the 
on
atenationof the 
ell name and "-soma". Thus, in this 
ase a soma named "
12861-soma" is 
reated. The fun
tionSTD-SETUP (
alled here without its optional ELEMENT argument) adds a 
urrent sour
e to the soma, and
auses the soma voltage to be plotted (see also Se
tion 18). The 
urrent sour
e (referen
ed here automati
allyby the global variable *ISOURCE*) stimuluation is set by PULSE-LIST (Se
tion 8). Finally, the values of afew global variables are set to �ne tune the simulation. Note that on
e this fun
tion is de�ned, you 
ouldTOPLOAD it dire
tly (again, sin
e TOPLOAD may be 
alled re
ursively):
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12861)The same 
ir
uit 
ould be a

omplished by writing a Lisp �le, let us say \/home/your-name/adp-
12861.lisp",that in
ludes:(topload "~/surf-hippo/anatomy/mis
/
12861.
a1.lisp")(std-setup) ; Add somati
 
urrent sour
e and plot soma voltage.(pulse-list *isour
e* '((1.0 2.9 1.0) (2.9 3.30 -1.2))) ; Set two pulse stimulus.(setq *pwl-isour
e-di-dt* 10.0 ; Make the 
urrent sour
e a little sluggish.*absolute-voltage-error* 0.001 ; We want high resolution for these tra
es.*save-data-step* 1 ; See every step of the simulation.*user-stop-time* 12.0)Reading in this �le, for example via the 
ir
uit loading menu with the 
ir
uit �le browser, or from lisp usingTOPLOAD:* (topload "/home/your-name/adp-
12861.lisp")would be the same as 
alling the fun
tion ADP-C12861 de�ned above.3.4 Menu Entry of Cir
uit Fun
tionsA 
ir
uit fun
tion may be loaded from the load 
ir
uit menu sequen
e by either typing in the name or
hoosing a name that has been added to the 
ir
uit fun
tion 
atalog, *CIRCUIT-FUNCTIONS*. For example,suppose that you in
lude in your system loading sequen
e a �le that de�nes a 
ir
uit fun
tion:(defun interneuron-234 ()(
reate-
ell-type "interneuron-234")...)If your load �les in
lude the statement:(push 'interneuron-234 *
ir
uit-fun
tions*)then the 
ir
uit loading menu will in
lude this 
hoi
e. Multiple fun
tions may be sele
ted from this menu,and all will be loaded to make up the simulated 
ir
uit. In this 
ase, an additional menu will appear thatasks for a name of the new 
ir
uit.Note that the same thing may be a
hieved by de�ning a fun
tion whi
h then 
alls the 
omposite 
ir
uitfun
tions. For example, suppose that the following fun
tions have been de�ned and listed in *CIRCUIT-FUNCTIONS*:(STAR-AMACRINE-DS N120-MAX-RED THREE-HIPPOS DEAD-HIPPO WORKING-HPC)In the menu, 
li
king on STAR-AMACRINE-DS and THREE-HIPPOS will load those two fun
tions and the simu-lated 
ir
uit will be made up of both. On the other hand, you 
ould:(defun star-dead ()(STAR-AMACRINE-3)(DEAD-HIPPO))TOPLOADing STAR-DEAD by itself will do the same thing.If a 
ir
uit fun
tion to be loaded is typed in, then the fun
tion name is also added to the fun
tion 
atalog(for the 
urrent session only).
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tions on Dupli
ate Cir
uit Element NamesThe same name may be assigned to two di�erent 
ir
uit elements, but only if they are not the same type(e.g. two segments, two somas, two 
hannels, et
.), no matter whether they are part of the same 
ell ordi�erent 
ells. The simplest way to avoid dupli
ate names is to ensure that all 
ir
uit element names are
onse
utive integers (the default - see below Se
tion 3.6). Otherwise, for 
ir
uits that in
lude more than oneinstan
e of a 
ell des
ription, it is normally suÆ
ient to assign a unique name to ea
h 
ell, sin
e elementnames (if not expli
itly de�ned) are derived from the name of the 
ell of whi
h it is a part. For example, iftwo HIPPO based fun
tions are 
li
ked in the 
ir
uit 
atalog fun
tion menu, an error o

urs as soon as these
ond in
arnation of the HIPPO 
ell is loaded:Reading in 
ir
uits DEAD-HIPPO_BASIC-HIPPO...Error in fun
tion HIPPO:
reate-soma: soma Hippo-soma already defined, ignoringRestarts:0: [CONTINUE℄ 
ontinue1: [ABORT ℄ Return to Top-Level.Debug (type H for help)(HIPPO "Hippo" :SYNAPSE-TYPES NIL :SYNAPSE-SEGS ...)Sour
e:; File: /usr/lo
al/surf-hippo/sr
/hippo
ampus/hippos.lisp(CREATE-SOMA :CELL CELL-NAME :DIAMETER SOMA-DIAMETER)0℄ qHere, the solution would be to expli
itly de�ne a new fun
tion that 
alls the two desired 
ell fun
tions, with,however, unique 
ell names asso
iated with ea
h:(defun dead-basi
-hippos ()(dead-hippo "Dead-Hippo")(working-hp
))One advantage of using automati
ally generated strings for element names (as the 
ase when *USE-SIMPLE-NAMES*is NIL, the default - see below) is that when passing a name to the ELEMENT fun
tion (and all those thatdepend on it; see Se
tion 4.1), the optional MODEL-TYPE argument usually won't be needed. Otherwise,with integer simple names, passing an integer (name) to ELEMENT with spe
ifying the model type will returnthe �rst element with that integer, in priority given by:(SOMA SEGMENT CHANNEL SYNAPSE CELL BUFFER PUMP ISOURCE CONC-INT PARTICLECONC-PARTICLE AXON VSOURCE EXTRACELLULAR-ELECTRODE ISOURCE-TYPE VSOURCE-TYPEBUFFER-TYPE PUMP-TYPE CHANNEL-TYPE CONC-INT-TYPE PARTICLE-TYPECONC-PARTICLE-TYPE SYNAPSE-TYPE AXON-TYPE CELL-TYPE NODE ELECTRODE)3.5.1 Dupli
ate Elements on Same Node - Naming Membrane ElementsIf automati
 name string generation is enabled, and you try to 
reate a dupli
ate membrane element on thesame soma or segment, a message like:CREATE-SYNAPSE: synapse Hippo-3-WILD already definedwill be printed and the element 
reation fun
tion will quit. In some 
ases, however, it may be useful to havedupli
ate instan
es of the same type of membrane element on the same node, for example light synapses(e.g. with di�erent RFs). In these 
ases, if the global variable *PROMPT-FOR-ALTERNATE-ELEMENT-NAMES* isT (the default), then the user is prompted before the additional element is 
reated - otherwise, the element
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ally 
reated with a new name that is 
reated from the standard name with an numeri
 extension(see the fun
tion CHECK-ELEMENT-NAME).Spe
i�
ally, synapses are 
reated with the CREATE-SYNAPSE fun
tion (see Se
tion 13.3). Referring to thearguments of this fun
tion, dupli
ate synapses are allowed if the POST-SYNAPTIC-ELEMENT already hasa synapse of the same type, and the PRE-SYNAPTIC-ELEMENT is either di�erent or the synapse type hasno PRE-SYNAPTIC-ELEMENT.If *ALLOW-DUPLICATE-SYNAPTIC-CONNECTIONS* is T (default), then more than one synapse of the sametype may be 
reated with the same pre and post synapti
 element.3.6 \Simple" (Numbered) Element NamesWhile in prin
iple every 
reated 
ir
uit element may be expli
itely named, normally one of two auto-mati
 name generating algorithms are used, a

ording to the global variable *USE-SIMPLE-NAMES*. When*USE-SIMPLE-NAMES* is T, 
ir
uit element are named with integers (unique sequen
e for ea
h element type).If *USE-SIMPLE-NAMES* is NIL, name strings for ea
h element will be generated whi
h in
lude informationto tell where and what the element is by inspe
tion. However, for large 
ir
uits these names 
an usesigni�
ant memory. Previously 
reated (and named) 
ir
uit elements 
an be renamed using this s
heme by aset of RENAME-xx-SIMPLE fun
tions, where xx stands for SYNAPSES, CHANNELS, PARTICLES, CONC-PARTICLES,AXONS, PUMPS and BUFFERS.3.7 Re
ommended Strategy for De�ning CellsThe safe way to build a 
ell is to �rst 
reate the 
ell with the CREATE-CELL fun
tion, and then use thereturned 
ell obje
t (or the name of the returned 
ell obje
t) as the 
ell referen
e for subsequent 
ells toCREATE-SOMA and CREATE-SEGMENT (or CREATE-TREE, et
.). In this way, if the 
ell-building 
ode is used aspart of a multiple 
ell 
ir
uit (even when the multiple 
ells are 
opies of the same 
ell stru
ture, that is ea
hreuse the same 
ode), if a 
all to CREATE-CELL requires an automati
 modi�
ation of the requested name,then the later 
alls to the other 
ell elements will still have a target 
ell to work with.This 
an be done by lo
ally binding the 
reated 
ell to a lo
al variable, and then passing that lo
alvariable to subsequent fun
tions, e.g.:(let ((
ell (
reate-
ell CELL-NAME ...)))(
reate-soma :
ell 
ell ...)(
reate-tree 
ell tree-list ...)...)Or, the 
all to CREATE-CELL 
an be dire
tly embedded within other fun
tions, e.g.:(
reate-tree(
reate-soma :
ell (
reate-
ell CELL-NAME ...) ...)tree-list ....)3.8 Adding or Subtra
ting Cells, Somas or Segments to a Loaded Cir
uitCells, somas or segments may be added to a TOPLOADed 
ir
uit if desired. However, the fun
tion:(pro
ess-
ir
uit-stru
ture)must be run after the new elements are 
reated to 
omplete their initialization. Note under most 
ir
um-stan
es this fun
tion will be 
alled automati
ally when simulating either a new or modi�ed 
ir
uit.
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uitA key 
on
ept in Surf-Hippo is that of being able to a

ess any element of the 
ir
uit by either the nameof that element, or with a pointer to the element stru
ture. The former 
ase is normally appropriate whenthere is an expli
it literal referen
e to a some element, for example when you must supply the elementreferen
e by a
tually typing it. The latter 
ase, although more abstra
t from the point of view of the user,is often appropriate sin
e many fun
tions return element stru
ture pointers. In any event both methods areemployed internally as ne
essary.4.1 The ELEMENT Fun
tionThe basi
 fun
tion for a

essing 
ir
uit elements is:element elt�referen
e &optional model�type fast [Fun
tion℄This fun
tion takes either an expli
it pointer to a stru
ture or the name of a stru
ture, and returns a pointerto a stru
ture. If ELT-REFERENCE is a name, whi
h may be a string, number or symbol, the mappingis not ne
essarily unique sin
e it is legal for two elements of di�erent types to have the same name. Thus,the type of the returned data stru
ture is either MODEL-TYPE, if in
luded, or 
hosen from all model typesa

ording to the following pre
eden
e:NODE SEGMENT SOMA CHANNEL SYNAPSE CELL BUFFER PUMP ISOURCE CONC-INT PARTICLECONC-PARTICLE AXON VSOURCE EXTRACELLULAR-ELECTRODE BUFFER-TYPE PUMP-TYPECHANNEL-TYPE CONC-INT-TYPE PARTICLE-TYPE CONC-PARTICLE-TYPE SYNAPSE-TYPEAXON-TYPE CELL-TYPE ELECTRODEThe ELT-REFERENCE argument to ELEMENT may be either a list or an atom (that is, a single string,symbol or number). If ELT-REFERENCE is a list, a list of all element stru
ture pointers asso
iated withall the atoms in the list is returned. If ELT-REFERENCE is an atom, just the single element stru
tureasso

iated with the atom is returned. In general, the fun
tions whi
h are based on ELEMENT have a similaroption, that is they operate on and possibly return a list of 
ir
uit element stru
tures if they are given a listargument, otherwise they do the same on an individual 
ir
uit element. For example (see Se
tion 4.3):* (segments)(<Segment Hippo-3: prox node Hippo-2><Segment Hippo-2: prox node Hippo-1><Segment Hippo-1: prox node Hippo-soma><Segment Hippo-5: prox node Hippo-4><Segment Hippo-4: prox node Hippo-3>)* (element "Hippo-1")<Segment Hippo-1: prox node Hippo-soma>* (element (list "Hippo-2" *soma* "Hippo-1"))(<Segment Hippo-2: prox node Hippo-1><Soma Hippo-soma><Segment Hippo-1: prox node Hippo-soma>)*In almost every 
ase in whi
h a do
umented Surf-Hippo fun
tion operates on a 
ir
uit element or elements,the ELEMENT fun
tion is used internally to 
onvert the element-spe
ifying argument to the a
tual elementdata stru
ture or stru
tures. Ex
eptions in
lude data stru
ture a

essor fun
tions, whi
h are automati
ally
reated when an data stru
ture is de�ned, and in those 
ases when the fun
tion do
umentation spe
i�es\...(requires expli
it stru
ture)".4.2 Generi
 Membrane Element Creation: The CREATE-ELEMENT Fun
tionThe following fun
tion:
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reate-element thing &rest others [Fun
tion℄is the generi
 
reate fun
tion for elements added to somas or segments, in
luding membrane elements (
han-nels, synapses) and other 
ir
uit elements (sour
es, axons, et
.). This fun
tion takes any number of arguments(this is what the &rest keyword, followed by the dummy variable others means), and 
onsiders all the atomsin the arguments. Given any atom whi
h referen
es an element type, an element of that type is added toall the 
ell elements whi
h are referen
ed in the arguments. If there are no referen
es to 
ell elements, thenany element types referen
ed in the arguments that do not already exist are 
reated. All 
reated elementsor element types are returned as a list if more than one, or as an atom if only one. For example:* (
reate-element 'NA-hh)<Channel Type NA-HH>* (
reate-element 'NA-hh *soma*)<Channel Hippo-soma-NA-HH: type NA-HH>* (
reate-element 'NA-hh *soma* 'DR-hh)(<Channel Hippo-soma-NA-HH: type NA-HH><Channel Hippo-soma-DR-HH: type DR-HH>)If the keyword :NO-DUPLICATES is in
luded in the arguments, then no dupli
ate elements (for example thesame synapse type on the same 
ell element) will be 
reated.Note that all elements have their own spe
i�
 CREATE-* fun
tions, whose more detailed argument optionsmay be ne
essary in 
ertain 
ases.4.3 Referen
ing Cir
uit Elements of a Given Class4.3.1 Referen
ing the Most Re
ently Created ElementsEa
h of these global variables point to the most re
ent 
reated instan
e of the given model type:*SOMA* *SEGMENT* *CELL**VSOURCE* *ISOURCE* *AXON**SYNAPSE* *CHANNEL* *PUMP* *BUFFER**ELECTRODE* *PARTICLE* *CONC-PARTICLE**CELL-TYPE* *AXON-TYPE* *SYNAPSE-TYPE**CHANNEL-TYPE* *PUMP-TYPE* *BUFFER-TYPE**PARTICLE-TYPE* *CONC-PARTICLE-TYPE*If the element referen
ed by one of these variables is destroyed, then that variable is updated to the nextmost re
ently 
reated instan
e.4.3.2 Referen
ing all ElementsA series of fun
tions, in
luding:nodes &optional (element nil element�supplied-p) [Fun
tion℄as well asSEGMENTS, SOMAS, CELLS, CELL-TYPES, ISOURCES, VSOURCES, SYNAPSES,CHANNELS, SYNAPSE-TYPES, CHANNEL-TYPES, PARTICLES, CONC-PARTICLES,PARTICLE-TYPES, CONC-PARTICLE-TYPES, CONC-INT-TYPES, CONC-INTS, PUMPS,PUMP-TYPES, BUFFERS, BUFFER-TYPES, AXONS, AXON-TYPES, ELECTRODES,EXTRACELLULAR-ELECTRODESreturn a list of all the nodes (segments, et
.) asso
iated with ELEMENT, whi
h may be a 
ell element (somaor segment) or a 
ell, or an element type. If ELEMENT is not in
luded, then a list of all nodes (segments,et
.) in 
ir
uit is returned. For example:
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on
-parti
le-types)(<Con
 Parti
le Type KCTX-HPC-CA><Con
 Parti
le Type KAHPO-HPC>)* (
on
-parti
les)(<Con
 Parti
le HPC-soma-KCT-HPC-KCTX-HPC-CA: type KCTX-HPC-CA><Con
 Parti
le HPC-soma-KAHP-HPC-KAHPO-HPC: type KAHPO-HPC>)* (
on
-parti
les 'KCTX-HPC-CA)(<Con
 Parti
le HPC-soma-KCT-HPC-KCTX-HPC-CA: type KCTX-HPC-CA>)* (
on
-parti
les *segment*)NIL* (
on
-parti
les *soma*)(<Con
 Parti
le HPC-soma-KAHP-HPC-KAHPO-HPC: type KAHPO-HPC><Con
 Parti
le HPC-soma-KCT-HPC-KCTX-HPC-CA: type KCTX-HPC-CA>)4.4 \Cell Elements" are Somas or SegmentsAll fun
tions whi
h refer to a soma or segment, for example as a destination for a newly 
reated 
hannel orsynapse, allow the CELL-ELEMENT (soma or segment) argument to be either the pointer to the a
tual Lispdata stru
ture or, as is often more 
onvenient espe
ially for 
alling fun
tions from the interpreter, by the nameof the CELL-ELEMENT. In general, the translation for all 
ir
uit elements (in
luding CELL-ELEMENTs)is with the ELEMENT fun
tion. Thus, suppose we want to add a type NA-HH 
hannel to a dendriti
 segment(
ompartment) that is 
alled "Hippo-3". This 
ould be done with(
reate-
hannel "Hippo-3" 'na-hh)or (
reate-
hannel (element "Hippo-3") 'na-hh)Obviously the latter 
ase is overspe
i�ed - the point is that there will be situations where it will be more
onvenient to pass the stru
ture pointer to a fun
tion like CREATE-CHANNEL, rather than a stru
ture name.In fa
t, in most 
ases fun
tions with element arguments are written so that the element stru
ture pointeror the element name may be used inter
hangeably, typi
ally by using the ELEMENT fun
tion at the start toa

ess the 
orre
t data stru
ture.Note that in these two examples CREATE-ELEMENT 
ould have been used instead of CREATE-CHANNEL, sin
ethe more spe
i�
 arguments for CREATE-CHANNEL were not used.4.5 Element ParametersEa
h element in the 
ir
uit is represented by a stru
ture, as de�ned by the model type. All stru
tures havea :PARAMETERS slot, as well as those slots that are unique to the model type. The :PARAMETERS slot is ageneral purpose lo
ation to store extra parameters in an asso
iation list. A

essing, loading, or 
hangingspe
i�
 values in the :PARAMETERS of a given element is done with:element-parameter element parameter &optional (value nil value�supplied�p) update [Fun
tion℄whi
h returns the value or values asso
iated with the key PARAMETER for elements in ELEMENT. IfVALUE is supplied, the parameter is set to this new value. For some types of elements and parameters,the UPDATE 
ag will 
ause the parameter to be fully pro
essed. Note that any parameter stored inthe :PARAMETERS slot is referen
ed to a key, whi
h is a Lisp symbol (for example both 'FOO-LEVEL and:FOO-LEVEL 
ould be used as distin
t keys). It is possible that a user-
hosen key 
ould 
on
i
t with onealready used in the Surf-Hippo 
ode. To insure against this, either grep the sr
/sys dire
tory to 
he
k for a
andidate key or 
hoose highly personalized keys that would be unlikely to be used by the 
reative Surf-Hipposta�.Whether or not element :PARAMETERS keys are quoted symbols or true keywords (that is pre
eded by a
olon) is arbitrary in Surf-Hippo. Some fun
tions (for example, the related fun
tion IV-TYPE-PARAMETER -see Se
tion 10.4) rely on keyword symbols, while others may refer to quoted symbols.



4 ELEMENTS IN THE CIRCUIT 304.6 Editing Individual ElementsIn general, parameters of segments, 
hannels and synapses are inherited from the appropriate 
ell type,
hannel type, and synapse type, respe
tively. However, for some of the element parameters, spe
i�
 instan
esof these elements may be assigned unique parameter values by SETFing the appropriate slot, or by using thefun
tion:edit-element element &optional model�type [Fun
tion℄for example,(EDIT-ELEMENT "Hippo-1" 'segment)If individual parameters of a given element are to be not overwritten by the relevant element type parameters,then the :INHERIT-PARAMETERS-FROM-TYPE slot of the element must be set to NIL (this is provided for inthe menus above). The initial value of :INHERIT-PARAMETERS-FROM-TYPE for a given element is set to thevalue of the relevant type :INHERIT-PARAMETERS-FROM-TYPE when the element is 
reated.The menus for individual element parameters are also a

essible via the histology element menu (sele
t asoma or segment �rst with mouse LEFT and then the menu for the 
hosen element with SHIFT-CONTROL-LEFT). A qui
k way to see some salient 
hara
teristi
s of a given element is by using:print-element element &optional model�type (stream *standard�output*) [Fun
tion℄plot-element element [Fun
tion℄When the argument of PRINT-ELEMENT is a 
ir
uit element (soma, segment, 
hannel, parti
le, et
.) the
urrent state of the element will also be printed as long as the 
ir
uit has been initialized (by the fun
tionINITIALIZE-SIMULATION, 
alled at the beginning of every simulation)4.7 Cell Element Lengths and Diaemterselement-length element &optional new�length [Fun
tion℄element-diameter element &optional new�diameter [Fun
tion℄These fun
tions return the total length or diameter, respe
tively, of the 
ell elements asso
iated with ELE-MENT in mi
rons - note that ELEMENT-LENGTH will return NIL if the asso
atied 
ell element is a soma andnot a segment (see also Se
tion 5). These fun
tions provide a

ess to segment and soma slot values :LENGTH(for segments only) and :DIAMETER.In addition, ea
h fun
tion has an optional argument (NEW-LENGTH or NEW-DIAMETER) whi
h,when supplied, will be
ome the new length or diameter of the 
ell element. In that 
ase, the global variable*CIRCUIT-PROCESSED*will be set to NIL, so that PROCESS-CIRCUIT-STRUCTUREwill be 
alled appropriatelyto pro
ess the 
hanged dimensions.4.8 Cell Element Areas and Volumeselement-area element &optional 
onsider�virtual�elements model�type [Fun
tion℄element-volume element &optional 
onsider�virtual�elements model�type [Fun
tion℄These fun
tions return the total area or volume, respe
tively, of the 
ell elements asso
iated with ELEMENTin square mi
rons or 
ubi
 mi
rons, respe
tively (see also Se
tion 5). Segment areas do not in
lude the
ylinder ends (i.e. only the lateral areas are 
onsidered). If a 
ell is given by ELEMENT, then the total 
ellarea or volume is 
onsidered. Related fun
tions in
lude:
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ell *
ell*) [Fun
tion℄This returns the area in square mi
rons of the dendriti
 (and axonal) tree atta
hed to the soma of CELL. IfCELL not supplied, uses the last 
ell 
reated in the 
urrent 
ir
uit.tree-length &optional (
ell *
ell*) [Fun
tion℄This returns the total length in mi
rons of the dendriti
 (and axonal) tree atta
hed to the soma of CELL.If CELL not supplied, uses the last 
ell 
reated in the 
urrent 
ir
uit.4.9 Anatomi
al Distan
e Fun
tionsNote that the referen
e point for a segment is the lo
ation of its distal node.as-the-
row-
ies lo
ation�1 lo
ation�2 [Fun
tion℄Returns the straight line distan
e between two elements, two expli
it lo
ations, of the 
ombination, inmi
rons. Elements 
an be either elements or names of elements, and expli
it lo
ations are lists of 3 numbers(X Y Z), e.g.:* (AS-THE-CROW-FLIES '(200 -300 50) "Hippo-5")1514.1003distan
e-to-soma element [Fun
tion℄Given an element or the name of an element, returns the distan
e along the tree to the soma in mi
rons.For example:* (distan
e-to-soma "Hippo-3")720.0neighbors target radius &optional restri
t�to�
ell�of�target [Fun
tion℄This returns a list of all elements of the same type as TARGET whi
h lie at most RADIUS mi
rons awayfrom the TARGET. For example:* (neighbors "1-1-38" 20.0)(<Segment 1-1-39: prox node 1-1-38><Segment 1-1-38: prox node 1-1-37><Segment 1-1-35: prox node 1-1-34><Segment 1-1-34: prox node 1-1-33><Segment 1-1-37: prox node 1-1-36><Segment 1-1-36: prox node 1-1-35><Segment 1-1-41: prox node 1-1-40><Segment 1-1-40: prox node 1-1-39>)element-
loud referen
e�element 
loud�radius &optionalrestri
t�to�referen
e�element�
ell returned�model�type [Fun
tion℄This returns a list of segments and or somas who are within a radius of CLOUD-RADIUS mi
rons fromREFERENCE-ELEMENT (whi
h 
an be any 
ell or membrane element). If RESTRICT-TO-REFERENCE-ELEMENT-CELL is T, then the returned somas/segments are 
onstrained to be from the same 
ell as theREFERENCE-ELEMENT.



4 ELEMENTS IN THE CIRCUIT 32distals-without distal�border &optional (model�type 'segment) 
ell [Fun
tion℄Returns all elements of MODEL-TYPE that are further from the soma than DISTAL-BORDER (mi
rons).proximals-within proximal�border &optional (model�type 'segment) 
ell [Fun
tion℄Returns all elements of MODEL-TYPE that are 
loser to the soma than PROXIMAL-BORDER (mi
rons).4.10 Bran
h-Related Fun
tionsA bran
h is de�ned as a set of singly 
onne
ted segments whose proximal and distal ends are nodes witheither more than 2 segments, or are a termination (soma or distal tip) point. The name of a bran
h is thename of its proximal segment.bran
h element &optional type [Fun
tion℄Given an ELEMENT, returns the bran
h (list of segments) that the segment asso
iated with ELEMENT isa part of. For example:* (bran
h "Hippo-2")(<Segment Hippo-5: prox node Hippo-4><Segment Hippo-4: prox node Hippo-3><Segment Hippo-3: prox node Hippo-2><Segment Hippo-2: prox node Hippo-1><Segment Hippo-1: prox node Hippo-soma>)bran
h-ends element [Fun
tion℄Returns a list of the proximal and distal segments of the bran
h referen
ed by ELEMENT. For example:* (bran
h-ends "Hippo-2")(<Segment Hippo-1: prox node Hippo-soma><Segment Hippo-5: prox node Hippo-4>)bran
h-elements bran
h�element element�type &optional total�segments ends [Fun
tion℄Returns a list of elements of type ELEMENT-TYPE from the bran
h identi�ed by BRANCH-ELEMENT.If the TOTAL-SEGMENTS is in
luded (should be a number), then elements are 
hosen from a total of(approximately) TOTAL-SEGMENTS segments, evenly distributed along the bran
h. Note that the orderof the elements in the list 
orresponds to the order of the segments in the bran
h, that is from proximal todistal. For example:(bran
h-element "11-5" 'segment 5)will return 5 (approximately) evenly distributed segments from bran
h "11-5". Related fun
tions in
ludebran
h-synapses-of-type bran
h�element type &optional total�segments ends [Fun
tion℄bran
h-
hannels-of-type bran
h�element type &optional total�segments ends [Fun
tion℄For example:(bran
h-synapses-of-type "11-5" "AUTO-INH")will return all the synapses of type AUTO-INH along the bran
h "11-5", from proximal to distal.



4 ELEMENTS IN THE CIRCUIT 334.11 Tree-Related Fun
tionssegments-out element &optional (segment�skip 0) previous�segs [Fun
tion℄Given a SEGMENT, returns a list of all the segments moving distally, skipping by SEGMENT-SKIP. If aloop is en
ountered (a segment distal to SEGMENT is found in the optional argument PREVIOUS-SEGS,whi
h is used on re
ursive 
alls to SEGMENTS-OUT), then an error is signaled.segments-in element &optional (segment�skip 0) [Fun
tion℄Given a SEGMENT, returns an in
lusive list of all the segments on the path to the soma, skipping bySEGMENT-SKIP.loop-
he
k &optional ex
lude�segments [Fun
tion℄Find any loops in the 
ir
uit trees by su
essive 
alls to SEGMENTS-OUT. If a loop is found, then SEGMENTS-OUTsignals an error.distal-segments element &optional in
lude�ele
trodes [Fun
tion℄Returns a list of all the segments dire
tly atta
hed to the distal node of segment asso
iated with ELEMENT,or the trunk segments if ELEMENT is asso
iated with the soma.proximals &optional (model�type 'segment) (proximal�distal�distan
e�
uto� 0.5) 
ell [Fun
tion℄distals &optional (model�type 'segment) (proximal�distal�distan
e�
uto� 0.5) 
ell [Fun
tion℄These fun
tions return lists of elements, a

ording to the spe
i�ed ELEMENT-TYPE, that are either prox-imal or distal on the dendriti
 tree with respe
t to whether their distan
e to the soma (along the mostdire
t path on the tree) is less than or greater than, respe
tively, the longest path in the tree times thePROXIMAL-DISTAL-DISTANCE-CUTOFF 
oeÆ
ient. If CELL is in
luded, then the returned elementsare only from that 
ell; otherwise elements are returned from all 
ells in the 
urrent 
ir
uit.soma-segments &optional target [Fun
tion℄Returns a list of the segments 
onne
ted to SOMA. If SOMA not supplied, referen
es the �rst soma 
reatedin the 
urrent 
ir
uit.trunk-segment element [Fun
tion℄Given a segment or a segment name, returns the asso
iated proximal segment that abuts onto the soma.4.12 Element Parameter Histogramselement-param-distribution model�type parameter &key parameter�fun
tion 
ell noteparam�max param�min type�for�title x�label y�labelx�min x�max x�in
 (x�axis�ti
k�skip 0) x�are�fnsy�min y�max y�in
 (y�axis�ti
k�skip 0) y�are�fnsbin�width in
lude�simulation�name (width 350) (height300) font title�position 
reate�new�window [Fun
tion℄
Generates a histogram of the distribution of various element parameters, in
luding:



4 ELEMENTS IN THE CIRCUIT 34'AREA => (element-area elt)'DISTANCE => (distan
e-to-soma elt)'DIAMETER => (element-diameter elt)'CAPACITANCE => (element-
apa
itan
e elt)'GBAR => (element-gbar elt)For example,(ELEMENT-PARAM-DISTRIBUTION 'SEGMENT'DISTANCE :bin-width 20)These histograms may be modi�ed somewhat with the histogram menu (Control-m with the mouse over thehistogram window).4.13 Units of MeasurementTable 1 lists the default units used in Surf-Hippo for all elements of the 
ir
uit.Quantity UnitsDistan
e mi
rometersSurfa
e area mi
rometers2Temperature degrees Cel
iusTime millise
ondsRate (e.g. parti
le kineti
s) millise
onds�1Voltage millivoltsCurrent nanoamperesCapa
itan
e nanofaradsSpe
i�
 
apa
itan
e mi
rofarads 
entimeters�2Resistan
e megaohmsResistivity ohms 
entimeters2Condu
tan
e (ohmi
 
ondu
tion)� mi
rosiemansPermeability (
onstant �eld 
ondu
tion)�;�� 
entimeters3 se
onds�1Con
entration millimolarAbsolute Condu
tan
e��� mi
rosiemansCondu
tan
e Density��� pi
osiemans mi
rometers�2Table 1: The default units used in Surf-Hippo for all elements of the 
ir
uit. � Applies to individual 
hannels andsynapses. �� Used in the :CONDUCTANCE slot. � � � Applies to 
hannel and synapse types.4.14 More Fun
tions Based on ELEMENTelement-name element &optional model�type [Fun
tion℄element-
ell element &optional model�type [Fun
tion℄element-
ell-element element &optional model�type fast(disable�element�slot�
ore�type
ase�error t) [Fun
tion℄These fun
tions return the names, 
ells, or 
ell elements, respe
tively, of the elements asso
iated with ELE-MENT of TYPE. For example:



4 ELEMENTS IN THE CIRCUIT 35* (element-name (segments))("Hippo-3" "Hippo-2" "Hippo-1" "Hippo-5" "Hippo-4")* (element-
ell "Syn-11-6-17-AUTO-FAST-EX")<Cell j43d: type V1-pyramidal>* (element-
ell-element "Syn-11-6-17-AUTO-FAST-EX")<Segment 11-6-17: prox node 11-6-16>Many elements 
an be turned on or o�, in other words enabled or disabled, using:enable-element element &optional model�type [Fun
tion℄disable-element element &optional model�type [Fun
tion℄For example, individual 
hannel or synapses types, or spe
i�
 
hannels or synapses, may be blo
ked (dis-abled), as well as membrane pumps, bu�ers, and 
on
entration integrators. Likewise, 
urrent and voltagesour
es may be turned on or o�, et
.element-lo
ation element &optional model�type [Fun
tion℄This returns the XYZ 
oordinates (mi
rons) of the 
ell element node(s) asso
iated with ELEMENT of TYPE.elements-of-type element�referen
e &optional 
ell�elements�referen
e [Fun
tion℄If ELEMENT-REFERENCE is a model type symbol (e.g. '
hannel or '
hannel-type), then returns all in-stan
es of the model (e.g. all 
hannels or all 
hannel types). Otherwise, if ELEMENT-REFERENCErefers to a spe
i�
 instan
e of an element parent type (a synapse type, a 
hannel type, et
.), returnsall the 
hild instan
es (synapses of that synapse type, or 
hannels of that 
hannel type, et
). If CELL-ELEMENTS-REFERENCE is in
luded, returned elements are restri
ted to 
ell elements asso
iated withCELL-ELEMENTS-REFERENCE; otherwise all elements are returned.* (elements-of-type 'NA-4STATE-EXP-GEN)(<Channel 119-NA-4STATE-EXP-GEN: type NA-4STATE-EXP-GEN><Channel 118-NA-4STATE-EXP-GEN: type NA-4STATE-EXP-GEN>...<Channel 11-NA-4STATE-EXP-GEN: type NA-4STATE-EXP-GEN>)
ell-elements &optional 
ell [Fun
tion℄Returns a list of all segments and somas asso
iated with the 
ell or 
ells in CELLS (
an be a single 
ell or alist) [default all 
ells in 
ir
uit℄.



5 FUNCTIONS FOR CREATING CELL ELEMENTS AND DEFINING CELL GEOMETRIES 365 Fun
tions for Creating Cell Elements and De�ning Cell Geome-triesThe most general way to 
reate 
ell geometries is by expli
it 
reation of somas and segments using thefun
tions des
ribed in this se
tion. Alternatively, various anatomi
al �le formats may be pro
essed to 
reate
omplete 
ells, as des
ribed in Se
tion 6.5.1 Expli
itly Creating Somas, Cells and SegmentsAt minimum, all neurons must have with a soma; the basi
 fun
tion for this step is
reate-soma &key 
ell name (lo
ation '(0.0 0.0 0.0)) length soma�
ylinder�diameter(di-ameter *default�soma�diameter*) parameters adjust�area�for�trunksshunt (enable�automati
�
ell�names *enable�automati
�
ell�names*)(automati
�name��xing *prompt�for�alternate�element�names*) [Fun
tion℄
where DIAMETER is in mi
rons. The CELL argument is either a 
ell stru
ture or a string - if not supplied, a
ell is 
reated. SHUNT (in ohms, default NIL), when supplied, is a non-spe
i�
 somati
 shunt. LOCATIONgives the xyz 
oordinates of the soma in mi
rons. When ADJUST-AREA-FOR-TRUNKS is T (default nil),then the soma area (as returned by the ELEMENT-AREA and ELEMENT-AREA-CM2 fun
tions) is adjusted for theareas of the fa
es of any abutting segments. If desired, the CELL argument may be supplied, for example,by the result of a 
all to
reate-
ell 
ell�name &key 
ell�type tree�list soma�diameter (segment�diameter 0.5)(origin '(0.0 0.0 0.0)) (name�suÆx *
ell�name�suÆx*)(enable�automati
�
ell�names *enable�automati
�
ell�names*)(automati
�name��xing *prompt�for�alternate�element�names*) [Fun
tion℄This fun
tion 
reates a new 
ell, if not already de�ned, and returns the 
ell. If 
ell is not already de�ned, asoma is 
reated when SOMA-DIAMETER is supplied (mi
rons), and if SOMA-DIAMETER and TREE-LISTare supplied, TREE-LIST is used in a 
all to CREATE-TREE, with a :DEFAULT-DIAMETER argument given bySEGMENT-DIAMETER (mi
rons, default 0.5). If the global variable *NEXT-CELL-NAME* is non-NIL, thenthis will be used instead of CELL-NAME. Always sets *NEXT-CELL-NAME* to NIL. If NAME-SUFFIX is non-NIL (default *CELL-NAME-SUFFIX*), it is automati
ally added as a suÆx to the name of a 
ell, even if this issupplied by *NEXT-CELL-NAME*. Thus, the values of either *NEXT-CELL-NAME* and/or *CELL-NAME-SUFFIX*may be set prior to the CREATE-CELL 
all in order to ensure unique 
ell names in a multiple 
ell 
ir
uit.The CELL-TYPE argument may be either an expli
it 
ell type or a type symbol used by a previouslyloaded CELL-TYPE-DEFma
ro (see Se
tion 9). If a type symbol does not 
orrespond to an entry in the param-eter library, then the 
ell type parameters will be taken from various global variables, in
luding *R-MEM*,*R-I*, *CAP-MEM*, *CAP-MEM-DENDRITE*, *SOMA-SHUNT*, *E-LEAK*, *E-NA*, *E-K*, *E-CA*, *E-CL*, inaddition to default spe
i�
ations for reversal potentials (:FIXED) and 
on
entrations (:FOLLOWS-GLOBAL).Note that ea
h of these fun
tions updates the global variables *SOMA*, *CELL* and *CELL-TYPE*, asappropriate (Se
tion 4.3.1).Dendrite geometries may be built up with repeated 
alls of
reate-segment name proximal�element &optional 
ell &key (diameter 0.0) (length 0.0)(theta 0.0) (phi (* �0.5 pi�single)) (relative�lo
ation '(0.0 0.0 0.0))relative�lo
ation�is�
oat absolute�lo
ationabsolute�lo
ation�is�
oat dummy�proximal�element�lo
ationdummy�proximal�element�lo
ation�is�
oat (ri�
oeÆ
ient 1.0)parameter�a�list [Fun
tion℄
whi
h returns the 
reated segment. NAME is a string. PROXIMAL-NODE may be either a string (whi
hmay point to an already 
reated node), a segment (whose distal node will be used as the new segment's



5 FUNCTIONS FOR CREATING CELL ELEMENTS AND DEFINING CELL GEOMETRIES 37proximal node), a soma or a node. The distal node name is the same as the segment name. Note thatthe membrane properties will be set again with the 
all to SET-SEGMENTS-MEMBRANE-PARAMETERS sin
esegment dimensions may have to be �gured out later when the segment is de�ned in terms of its 
oordinates.RELATIVE-LOCATION is of the segment's distal node relative to 
ell soma (in mi
rons). The lo
ationof the distal node relative to 
ell soma may also be determined by in
luding PHI, THETA (radians) andLENGTH (mi
rons) keyword arguments (see the fun
tion TREE-CONTROL below). Pre
eden
e of lo
ationinformation when segment node lo
ations are determined is de�ned in the fun
tion LOCATE-DISTAL-NODE.A 
oeÆ
ient for the intra
ellular resistivity will be taken from RI-COEFFICIENT, respe
tively, if either isnot equal to 1.0 (the default). Note that if the global variable *USE-SIMPLE-NAMES* is T the NAME will beignored (
an be NIL).A straight line of segments may be 
reated withsegment-
hain proximal�
ell�element 
hain�name total�segs seg�length seg�diam&key (proximal�phi 0.0) (proximal�theta 0.0) [Fun
tion℄whi
h adds a straight 
hain of segments of the same dimensions to the PROXIMAL-CELL-ELEMENT,returning the last (distal) segment in the 
reated 
hain. If CHAIN-NAME is nil, then the segment namesare derived from the name of the asso
iated 
ell. The PROXIMAL-PHI and PROXIMAL-THETA argumentsspe
ify the angle of the bran
h 
hain with respe
t to the PROXIMAL-CELL-ELEMENT, in radians. Thedefault values of 0.0 for PROXIMAL-PHI and PROXIMAL-THETA generate a 
hain that extends from thePROXIMAL-CELL-ELEMENT in the positive X dire
tion. For a 
hain of segments that extends in thepositive Y dire
tion, in
lude the key argument::PROXIMAL-THETA (* -0.5 pi)The orientations of the PROXIMAL-PHI and PROXIMAL-THETA arguments are given in Figure 1. See forexample the de�nition of the WorkingModel geometry, given by the fun
tion HIPPO (sr
/hippo
ampus/hippo.lisp).Y^ |Proximal theta = pi/2 | |Proximal phi = 0.0 | | /| | /| | /| /| /|/-------------/------------X/|/ | ------> Proximal Theta/ | and Phi = 0.0/ |Z / |/ ||Figure 1: Relative orientations of the 
hain of segments generated by SEGMENT-CHAIN, a

ording to the fun
tionarguments PROXIMAL-THETA and PROXIMAL-PHI.More sophisti
ated dedrite geometries may be de�ned by
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reate-tree 
ell�referen
e segment�list &key (xy�fa
tor1.0) (z�fa
tor 1.0) (add�
ell�name�to�segs *add�
ell�name�to�segs*add�
ell�name�to�segs�supplied�p) (default�soma�diameter*default�soma�diameter*) (default�diameter 0.5) [Fun
tion℄whi
h 
reates a segment tree a

ording to SEGMENT-LIST, adding the tree to the soma asso
iated withCELL. The asso
iated 
ell is returned. SEGMENT-LIST is a list of lists, where the sublist format is asfollows:(prox-elt-name seg-name x y z &optional diameter extras)The PROX-ELT-NAME refers to the proximal segment or soma, the SEG-NAME is for the segment to be
reated, and x, y, and z refer to the 
oordinates of the distal node of the segment to be 
reated. EXTRASis a list of lists for adding 
hannels or synapses to a segment. If GLOBAL-EXTRAS-LIST is supplied, thenthis list is used in addition to any extras spe
i�
 to a given segment. XY-FACTOR and Z-FACTOR ares
aling fa
tors for node 
oordinates, whi
h may be useful when translating histologi
al renderings into thesublists. The PROX-ELT-NAME of the �rst sublist will refer to the soma, whi
h has been 
reated alreadywith CREATE-SOMA. For example, the segment sublist:(soma 1a 7 -1 -5 1.2)spe
i�es a segment named "1a" whose proximal end 
onne
ts to the node named "soma", whose distal nodehas 
oordinates (7�XY-FACTOR, -1�XY-FACTOR, -5�Z-FACTOR), and whose diameter is 1.2 mi
rons.Likewise, the segment sublist:(1a 1b 12 -3 -7 0.6 '(KA-HPC))spe
i�es a segment named "1b" whose proximal end 
onne
ts to the distal node of segment "1a", whosedistal node has 
oordinates (12�XY-FACTOR, -3�XY-FACTOR, -7�Z-FACTOR), and whose diameter is0.6 mi
rons. In addition, an KA-HPC type 
hannel is in
luded at the segment's distal node. If the PROX-ELT-NAME and SEG-NAME are the same, then this is the 
ell's soma, and the diameter is the soma diameter(whi
h overrides the previous diameter). This entry will be used to referen
e the 
oordinates of the segments,so that they are 
reated in relative 
oordinates. The soma origin is set elsewhere if it is to be other than (00 0). If the ADD-CELL-NAME-TO-SEGS keyword is set, then the 
ell name is prepended to the segmentnames spe
i�ed in the segment sublists.For an example of CREATE-TREE, see the de�nition of STAR-AMACRINE (sr
/retina/star-ama
rine.lisp,derived from data of Tau
hi and Masland, 1984; this is the 
ell referen
ed in STAR-AMACRINE-DS).5.2 Moving Cells and Modifying Cell Geometrymove-
ell 
ell new�origin [Fun
tion℄shift-
ell 
ell &key (x�shift 0.0) (y�shift 0.0) (z�shift 0.0) [Fun
tion℄These fun
tions allow moving a CELL (referen
ed by either the 
ell or the name of the 
ell) relatively(SHIFT-CELL) or absolutely (MOVE-CELL), with all dimensions given in �m.set-proximal-thetas seg &optional (total�fan�angle 30.0) (spreadmoredistal 0) [Fun
tion℄For spreading out a bran
h. Fans out segments working outward from SEG by distal re
ursion to the end ofthe asso
iated bran
hs, su
h that the total fan angle at ea
h bran
h point is equal to:TOTAL� FAN �ANGLE + SPREADMOREDISTAL#segmentstosoma (1)



5 FUNCTIONS FOR CREATING CELL ELEMENTS AND DEFINING CELL GEOMETRIES 39SPREADMOREDISTALTOTAL-FAN-ANGLE + ---------------------------number of segments to somawith all angles given in degrees.warp-
ell 
ell &key (x�fa
tor 1.0) (y�fa
tor 1.0) (z�fa
tor 1.0) [Fun
tion℄Multiplies the relative lo
ation ve
tor of ea
h node of CELL by the appropriate key arguments, and then
alls PROCESS-CIRCUIT-STRUCTURE to reevaluate the segment dimensions and ele
tri
al parameters.
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essing Anatomy FilesThis se
tion des
ribes 
onversions of various anatomy �le formats into Surf-Hippo format.6.1 Anatomy File TypesAs explained below, a ha
k of the Unix program nts
able is used to translate 
ertain anatomi
al �le formatsinto Lisp �les that then may be input into Surf-Hippo. These formats in
lude:� NTS (Neuron Tra
ing System, Eute
ti
 Ele
troni
s)� Rodney Douglas� Ro
ky NevinNeurolu
ida format �les, on the other hand, are pro
essed dire
tly by Surf-Hippo.When loading anatomy �les using expli
it fun
tions su
h as SURF, TOPLOAD, or ADD-CIRCUIT, the globalvariable *CIRCUIT-FILE-TYPE* is set automati
ally as appropriate for ea
h �le. The relevent values are::NEUROLUCIDA:LISPIn this se
tion, only the �rst two values are pertinent. If anatomy �les are loaded with the menus, thisvariable is set automati
ally.6.2 Using The Surf-Hippo Ha
k of nts
able to Translate Neuronal AnatomyFilesThe geometry of the soma and dendriti
 tree for a 
ell model may be derived dire
tly from various anatomi
alre
onstru
tion �le formats. The basi
 pro
ess is:anatomy.file that 
an be digested by nts
able|| nts
able (under Unix)|VSurf-Hippo lisp 
ir
uit file|| editing (optional)|VLoad 
ir
uit file into the simulation with menusor via s
ripts using a fun
tion su
h as TOPLOADor READ-IN-CIRCUIT.6.3 Cell Type Spe
i�
ation For Anatomy File-Based CellsIn order to expli
itely de�ne the 
ell type for anatomy�le-based 
ells, it is ne
essary to set the value of theglobal variable *DEFAULT-CELL-TYPE-NAME* prior to loading the anatomy �le, a

ording to some de�nitiongiven by a CELL-TYPE-DEF form.



6 PROCESSING ANATOMY FILES 416.3.1 nts
able and Surf-Hipponts
able is a C program written by JC Wathey, then at the Computational Neurobiology Laboratory of theSalk Institute. From the nts
able.do
 �le:"This program translates a digitized morphologi
al des
ription of a neuron into �les whi
h 
an beused dire
tly by the simulation programs "CABLE" and "NEURON", by Mi
hael Hines of DukeUniversity (Hines, 1989). In its original in
arnation, nts
able 
ould only read data �les in thesyntax of the Neuron Tra
ing System (Eute
ti
 Ele
troni
s) and 
ould only produ
e output inCABLE syntax; hen
e the name "nts
able". The latest version 
an also read data �les generatedby the digitizing systems of Rodney Douglas and Ro
ky Nevin. All of these digitizing systemsare similar in 
on
ept. Sin
e the Eute
ti
 NTS system is the most widely used, it is des
ribed insome detail under INPUT FILE SYNTAX, below. Spe
ial 
onsiderations for using Douglas andNevin data �les are also des
ribed there."We have ha
ked nts
able a bit so that it will generate �les that Surf-Hippo 
an digest, using fun
-tions found in sr
/sys/nts
able.lisp. All the �les asso
iated with nts
able itself are found in themis
/nts
able/ dire
tory The �le /mis
/nts
able/nts
able.do
 is the original do
umentation for nts
a-ble, while the �le that you are reading now is just relevant to Surf-Hippo.NOTE: nts
able must be (re)
ompiled with the Surf-Hippo ha
k of write.
 (surf-hippo-write.
) and theasso
iated make�le. A re
ompiled exe
utable "nts
able" �le is found in the /mis
/nts
able/nts
able/dire
tory.6.3.2 Running nts
able for Making Surf-Hippo Anatomy FilesTo translate an anatomy �le into a Surf-Hippo (lisp) �le, you run the modi�ed nts
able from UNIX (notfrom Lisp!!):unix-prompt> nts
able -x n input-anatomy-file output-lisp-fileIn other words, 
ompiling nts
able with surf-hippo-write.
 
auses the "-x n" option (originally used togenerate NEURON format �le) to mean "generate a Surf-Hippo format �le".nts
able assigns ea
h point of the 
ell the original anatomi
al 
oordinates, whi
h may be referen
ed toan arbitrary origin. Surf-Hippo, on the other hand, assigns the (relative) origin of ea
h 
ell to that 
ell'ssoma 
enter. Thus, the :RELATIVE-LOCATION for the segment nodes are with respe
t to the soma origin.The :ABSOLUTE-LOCATION of the nodes for the segments and the soma of a 
ell are 
al
ulated by adding therelative 
oordinates to the value in the 
ell's :ORIGIN. Sin
e nts
able assigns essentially absolute 
oordinatesto the 
ell elements, Surf-Hippo adjusts these 
oordinates, a

ording the lo
ation of the soma as de�ned bynts
able, so that the soma relative 
oordinate is at the origin, and everything in the 
ell is referen
ed fromthere, as explained.It is possible that the input anatomy �les will have more than one (
onne
ted) point with the same
oordinates. The pro
essing by the nts
able.lisp fun
tions kills the resulting zero-length segments.6.3.3 nts
able Somas ! Surf-HippoThe soma dimensions have two 
hara
teristi
s, as determined by nts
able. First, this program 
al
ulatesthe diameter of an equivalent spheri
al soma, and it is this quantity whi
h Surf-Hippo uses for the ele
tri
alrepresentation of the soma. This is re
e
ted in a Lisp form near the beginning of the nts
able output �lethat is something like this:(setq *nts-radius* (sqrt (/ 1453.39 (* 3.14159 4))))This may be edited if ne
essary before loading the �le into Surf-Hippo. In addition, the soma diameter maybe rede�ned by the Surf-Hippo user menu.nts
able also generates a list of parallel 
ir
les (sli
es) representing the soma, and a point list that followsan outline whi
h is orthogonal to the sli
es. Surf-Hippo uses these data for generating the graphi
al pi
tureof the soma. This shape is irrelevant with respe
t to the 
ir
uit representation of the soma. The assumptionis that nts
able has 
al
ulated a reasonable spheri
al approximation to the anatomi
al points.



6 PROCESSING ANATOMY FILES 426.3.4 Surf-Hippo Addendum to the nts
able Output FilesThe Surf-Hippo version of nts
able produ
es an output �le that has, at the end, several Lisp forms that mayalso be edited as desired. These in
lude (with their default values):(setq *nts-
ell-type* "nts
able")(setq *nts-
ell-name* "nts
able")(setq *nts-r-mem* 40000.0)(setq *nts-soma-r-mem* 40000.0)(setq *nts-r-a* 200.0)You also may want to add a form like the following:(setq *nts-
ell-type-notes*"Sub-genius pyramidal neuron, area Z, digitized by Ramon Y. Cajal")However, if the global variable *DEFAULT-CELL-TYPE-NAME* is non-NIL, then the referen
ed 
ell type willoverride these spe
ial NTS global variables.For large 
ell �les, it is mu
h more eÆ
ient to load 
ompiled �les into Surf-Hippo than the sour
e (as
ii)�les. The �le browser that appears when a �le is to be loaded into Surf-Hippo tags both *.lisp �les and*.spar
f (
ompiled) �les.When the global variable *ADD-CELL-NAME-TO-SEGS* is T, then the value of *NTS-CELL-NAME* is prependedon the segment names derived from the original anatomy list. This is ne
essary if you are going to use thesame anatomy �le for more than one 
ell.6.4 Some notes on Ro
ky Nevin format �lesA point labeled "P" generates:DG-m49-4-22-92: invalid point type 'P' in line 12Changing the "P" to a "B" seems to do the right thing. Apparently, the EOF must o

ur at the end of thelast line, i.e. no extra CRs or LFs. Otherwise (?) -read_nevin: syntax error in DG-m49-4-22-92 at line 736:6.5 Neurolu
ida File FormatNeurolu
ida �les are pro
essed by the fun
tion:read-neurolu
ida-�le �lename &optional 
ell�name [Fun
tion℄In general, you will not have to 
all this fun
tion expli
itly.The proximal lo
ation of ea
h segment is taken (inferred) from the neurolu
ida �le format. There may be
ases where this lo
ation is only referred to on
e in the �le, in the sense that a segment is de�ned as startingfrom a lo
ation whi
h is not shared by any other 
ell lo
ation. In these 
ases, the proximal lo
ation (from the�le) is assigned to the segment's :DUMMY-PROXIMAL-NODE-LOCATION slot, and the proximal node is 
hosen asthe 
losest node in the rest of the 
ir
uit. The lo
ation spe
i�ed by the :DUMMY-PROXIMAL-NODE-LOCATIONslot is used for 
al
ulating the length and drawing geometry of the segment, while the a
tual proximal node(the segment's :NODE-1 slot) is the 
onne
tion used by the ele
tri
al 
ir
uit.The soma of the 
ir
uit is really a ha
k at the moment, sin
e the neurolu
ida �les just de�ne 
ylinderi
alsegments. For all segments that are assigned to the "soma" by the neurolu
ida format (e.g. a "minor 
ode"of 41 or 42), a 
ag is set in the segment :PARAMETERS a-list in an entry whose CAR is 'SOMA-SEGMENT using thefun
tion (element-parameter seg 'soma-segment t) Also, a list in the 
ir
uit's soma :PARAMETERSa-list is an entry whose CAR is 'SEGMENTS and whose CDR is a list of segments "assigned" by the original�le as 
orresponding to the original 
ell's soma. This list of segments, when it exists, is used by Surf-Hippowhen the 
ell soma is sele
ted in a histology window, i.e. the set of segments is highlighted.



6 PROCESSING ANATOMY FILES 43Segments assigned to the soma may be retrieved by the fun
tion soma-segments &optional CELLwhi
h returns a list of segments whi
h are 
on
eptually assigned to the a
tual 
ell soma.Con
eptual soma segments may added by the fun
tion add-soma-segment SOMA SEG and may beremoved (from the soma assignment, not from the 
ir
uit) with remove-soma-segment SOMA SEG Prob-lems that show up in the graphi
al rendition of a 
ell or otherwise 
an be tra
ed to the neurolu
ida �le byusing the following form (for example referen
ing segment 527):* (element-parameter 527 'file-line-number) 6793 * This gives the line number in theoriginal �le whi
h de�ned the distal lo
ation and radius of the segment. In this example, it was determinedthat segment 527 did not look right, so with the above form it was dis
overed that the 6793rd line in theanatomy �le de�ned the segment.Now look at �le -...[1,2℄ (37.21, 18.54, 16.00) 0.58[1,2℄ (37.60, 18.54, 16.00) 0.58[1,2℄ (37.60, 19.30, 16.00) 0.58[1,2℄ (37.98, 19.30, 16.00) 0.58 <- line 6793[10,5℄ (37.60, 19.30, 16.00) 0.58[1,2℄ (37.60, 19.30, 16.00) 0.58[1,2℄ (39.13, 18.92, 16.00) 0.58[1,2℄ (39.51, 18.92, 16.00) 0.58...The problem is that there is a loop ba
k after the [10,5℄ line whi
h 
onne
ts a segment to the segment atlo
ation (37.60, 19.30, 16.00). Two solutions are possible: either blo
k the 
reation of the segment at (37.98,19.30, 16.00), or spe
ify a bran
h point at (37.60, 19.30, 16.00). The se
ond solution requires adding thefollowing line:[1,2℄ (37.60, 18.54, 16.00) 0.58[1,2℄ (37.60, 19.30, 16.00) 0.58[1,2℄ (37.98, 19.30, 16.00) 0.58[10,5℄ (37.60, 19.30, 16.00) 0.58;; adding this line be
ause otherwise we have a loop[2,1℄ (37.60, 19.30, 16.00) 0.58[1,2℄ (37.60, 19.30, 16.00) 0.58[1,2℄ (39.13, 18.92, 16.00) 0.58[1,2℄ (39.51, 18.92, 16.00) 0.58The pre
eeding dis
ussion assumes that the des
ribed pro
ess does not in fa
t bend ba
k and pass througha point in spa
e that was already assigned to another point on the pro
ess. In the translation algorithm, itis assumed that there should be a unique assignment of points in spa
e to anatomi
al points.The parsing of these �les by Surf-Hippo allows lines to be 
ommented out by a leading ";".6.6 Zero Length Segments in TreesIf the tree de�nition parameters spe
ify a segment of zero length, then that segment is not in
luded in the�nal tree. During the pro
essing of the 
ell geometry, a message will appear that you 
an refer to later inorder to modify the original parameters, if desired:
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ir
uit CELLULE2...Destroying zero length segment BAS4-3Destroying zero length segment BAS3-3Lo
ating segments...



7 CELL, CABLE AND LINEAR PARAMETERS 457 Cell, Cable and Linear ParametersThere are a variety of fun
tions for evaluating 
ommon 
ell and 
able parameters and various linear param-eters of 
ells.7.1 Basi
 Linear Properties of Cell TypesThe CELL-TYPE-PARAMETER fun
tion is similar to the IV-TYPE-PARAMETER fun
tion, but for examining or
hanging 
ell type parameters:
ell-type-parameter element param &optional (value nil value�supplied�p) (update t) [Fun
tion℄PARAM 
an be::RI [ohms-
m℄These set both the soma and the dendriti
 values -:RM [ohms-
m2℄:V-LEAK [mV℄:CM [uF/
m2℄These set only the dendriti
 values-:RM-DENDRITE [ohms-
m2℄:V-LEAK-DENDRITE [mV℄:CM-DENDRITE [uF/
m2℄These set only the somati
 values-:RM-SOMA [ohms-
m2℄:V-LEAK-SOMA [mV℄:CM-SOMA [uF/
m2℄:SOMA-SHUNT [ohms℄7.2 Basi
 Linear Properties of Segments and SomasOther fun
tions for examining or setting segment and soma parameters individually in
lude the following.set-segment-absolute-parameters seg 
apa
itan
e g�axial g�leak [Fun
tion℄segment-v-leak segment [Fun
tion℄segment-g-axial segment [Ma
ro℄segment-g-leak segment [Ma
ro℄segment-
apa
itan
e segment [Ma
ro℄set-soma-absolute-parameters soma 
apa
itan
e g�leak [Fun
tion℄
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tion℄soma-g-leak soma [Ma
ro℄soma-
apa
itan
e soma [Ma
ro℄7.2.1 Somati
 ShuntA non-spe
i�
 soma shunt is 
onsidered when the :INCLUDE-SHUNT slot of a soma is non-NIL (see also Se
-tion 5). The value of the shunt is given by either a non-nil value of (element-parameter soma 'soma-shunt)or by the :SOMA-SHUNT slot of the soma's 
ell-type (see Se
tion 5).7.3 Geometry Parameters of Segments and SomasFor lengths and diameters of 
ell elements, see Se
tion 4.7 for a des
ription of the fun
tions ELEMENT-LENGTHand ELEMENT-DIAMETER. For the membrane surfa
e areas and the total volume of these elements, you mayuse ELEMENT-AREA and ELEMENT-VOLUME, as des
ribed in Se
tion 4.8.7.4 More Linear Properties of Segments, Somas and Cells
ell-
ap &optional (
ell *
ell*) (ex
lude�ele
trodes t) [Fun
tion℄This returns the total 
apa
itan
e of the CELL in nF. If CELL not supplied, uses the �rst 
ell 
reated inthe 
urrent 
ir
uit. When EXCLUDE-ELECTRODES is T, any 
ontribution by atta
hed ele
trodes will beignored.lambda-
able ri rm a�um [Fun
tion℄This returns 
able ele
trotoni
 spa
e 
onstant in 
m. Intra
ellular resistivity RI is in 
 
m, membraneresistivity RM is in 
 
m2, and 
able radius A-UM is in mi
rons.length-from-lambda ri rm a�um l [Fun
tion℄This returns 
able length in um given intra
ellular resistivity RI (
 
m), membrane resistivity RM (
 
m2),
able radius A-UM (mi
rons), and ele
trotoni
 length L (dimensionless!).segment-ele
trotoni
-length seg [Fun
tion℄This returns ele
trotoni
 length of segment SEG.ele
trotoni
-length length diameter 
ell�type�ri ri�
oeÆ
ient 
ell�type�rm [Fun
tion℄This returns ele
trotoni
 length of segment given expli
it parameters LENGTH (mi
rons), DIAMETER(mi
rons), CELL-TYPE-RI (
 
m), RI-COEFFICIENT (dimensionless), and CELL-TYPE-RM (
 
m2).g-inf-in ri rm a�um &optional lambda�
able [Fun
tion℄This returns the input 
ondu
tan
e of semi-in�nite 
able, in �S. Intra
ellular resistivity RI is in 
 
m,membrane resistivity RM is in 
 
m2, and 
able radius A-UM is in mi
rons.
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able-in ri rm a�um l�um &optional (g�end 0.0) [Fun
tion℄This returns input resistan
e (M
) to sealed-end (open 
ir
uit) 
able of length L-UM (mi
rons). Intra
ellularresistivity RI is in 
 
m, membrane resistivity RM is in 
 
m2, and 
able radius A-UM is in mi
rons. OptionalG-END is in �S.z-
able-in-seg segment &key store�segment�z�
able�in [Fun
tion℄This returns input resistan
e (M
) of SEGMENT, taking into a

ount the tree distal to the segment, usingthe 
able parameters.z-
able-in-
ell &optional (
ell *
ell*) z�tree [Fun
tion℄This returns input resistan
e (M
) of 
ell, using the 
able parameters for the dendriti
 tree if Z-TREE is notsupplied. Otherwise, the input resistan
e is 
al
ulated from the soma resistan
e and the Z-TREE argument(M
). If CELL not supplied, uses the �rst 
ell 
reated in the 
urrent 
ir
uit.z-tree-
able-in-
ell &optional (
ell *
ell*) in
lude�virtual�soma [Fun
tion℄This returns input resistan
e (M
) of dendriti
 tree of CELL, using the 
able parameters. If no tree, returnsNIL. If CELL not supplied, uses the �rst 
ell 
reated in the 
urrent 
ir
uit. If INCLUDE-VIRTUAL-SOMAis T, in
lude any segments assigned to the soma.z-dis
rete-in-
ell &optional 
ell z�tree [Fun
tion℄This returns input resistan
e (M
) of 
ell, using the 
ompartmental network parameters. If CELL notsupplied, uses the �rst 
ell 
reated in the 
urrent 
ir
uit.z-tree-dis
rete-in-
ell &optional (
ell *
ell*) in
lude�virtual�soma [Fun
tion℄This returns input resistan
e (M
) of dendriti
 tree of CELL, using the 
ompartmental network parameters.If no tree, returns NIL. If CELL not supplied, uses the �rst 
ell 
reated in the 
urrent 
ir
uit. If INCLUDE-VIRTUAL-SOMA is T, in
lude any segments assigned to the soma.g-element element g�density [Fun
tion℄This returns the absolute 
ondu
tan
e of CELL-ELEMENT in �S. G-DENSITY is in pS per square mi
ron.



8 CURRENT AND VOLTAGE SOURCES 488 Current and Voltage Sour
es8.1 Adding Sour
esSour
es may be added with the histology window menus, or by 
alling the fun
tions:add-isour
e &optional (element *soma*) &key name pulse�list (type 'autonomous) [Fun
tion℄add-vsour
e &optional (element *soma*) &key name (ideal t) pulse�listdefault�magnitude [Fun
tion℄For example:(add-isour
e "Hippo-soma")or (add-vsour
e "Hippo-soma")If the optional NAME argument is not supplied, the name of the sour
e is the node name 
on
atenated witheither "isr
" or "vsr
", as appropriate.A more detailed method is to use the fun
tions:
reate-pwl-isour
e 
ell�element &key type name node�1�
ell�element (use�pulse�listt) pulse�list (enable�individual�pulses t) enable�pulse�trainpulse�train�args waveform�spe
 (waveform�time�interval*default�waveform�step*) [Fun
tion℄

reate-pwl-vsour
e 
ell�element &key (waveform�time�interval*default�waveform�step*) name pulse�train�argsenable�pulse�train (ideal t) (enable�individual�pulses t) pulse�list(use�pulse�list t) waveform�spe
 [Fun
tion℄In these fun
tions, if both aWAVEFORM sequen
e andWAVEFORM-ARGS are in
luded, thenWAVEFORM-ARGS is ignored.A given 
ir
uit element may have more than one 
urrent sour
e (with di�erent names), but only onevoltage sour
e (even though the voltage sour
e has a non-zero sour
e impedan
e).For editing properties of individual sour
es:edit-sour
e sour
e [Fun
tion℄edit-sour
e-stimulus sour
e [Fun
tion℄where SOURCE is either a voltage or 
urrent sour
e, or the name of one.For 
onvenien
e, the most re
ently 
reated 
urrent sour
e or voltage sour
e is assigned to the globalvariables *ISOURCE* and *VSOURCE*, respe
tively.8.2 Current and Voltage Sour
e Driving Fun
tionsCurrent and voltage sour
es generate pie
e-wise linear waveforms whi
h are derived either from user-spe
i�edpulse sequen
es or from a full waveform array assigned to the sour
e. In the latter 
ase, the values in thearray may be �lled from a 
hoi
e of various 
anoni
al fun
tions or with an arbitrary waveform, using theADD-WAVEFORM fun
tion, des
ribed below.



8 CURRENT AND VOLTAGE SOURCES 49Pulses are used as the driving fun
tion when the :USE-PULSE-LIST slot of the sour
e is T; otherwise awaveform de�nes the sour
e output. The parameters of the pulses or waveforms are stored in the sour
e:PARAMETERS, e.g.:(element-parameters "Hippo-soma-vsr
'') ->((PULSE-TRAIN-ARGS (:START . 50.0) (:STOP . 200.0) (:DELAY . 10.0)(:DURATION . 10.0) (:PERIOD . 30.0) (:AMPLITUDE . -30.0))(ENABLE-PULSE-TRAIN . T)(PULSE-LIST (50.0 90.0 -20.0)))Similar arguments may be in
luded in the CREATE-PWL-ISOURCE or CREATE-PWL-VSOURCE fun
tions as seenabove. See dis
ussion on PULSE-LIST below.For pulse-based waveforms that a
tually drive a sour
e, ea
h pulse is approximated in a pie
e-wise linearfashion between the breakpoints of the pulse train, where the slope of ea
h transition is determined by thevariables*pwl-isour
e-di-dt* 100.0 [Variable℄*pwl-vsour
e-dv-dt* 1000.0 [Variable℄These values (in nA/mse
 and mV/mse
, respe
tively) may be edited with the menus.For waveforms that are derived from array values, the time base for the array is spe
i�ed in the 
ase ofthe 
anoni
al fun
tions as the STEP parameter (millise
onds), or in the WAVEFORM-TIME-INTERVALargument of ADD-WAVEFORM (default 0.2ms). In either 
ase, the array time base is inverted and assigned tothe :WAVEFORM-TIME-INTERVAL-INVERSE slot of both 
urrent and voltage sour
es. The output value of asour
e at a given time point is a pie
e-wise linear interpoloation between the array values that frame the
urrent time point. This two-point-based interpolation should be kept in mind when assigning a value ofthe array time base (the time resolution of the array), so that the synthesized waveform is an adequateapproximation of the desired sour
e output fun
tion.8.3 Spe
ifying Pulse Sequen
es and Pulse TrainsPulses may be de�ned as either des
riptions of individual pulses and/or a des
ription of a pulse train.The �nal driving fun
tion pulse sequen
e may be a 
ombination of both, depending on the values of'ENABLE-INDIVIDUAL-PULSES and 'ENABLE-PULSE-TRAIN in the sour
e :PARAMETERS.pulse-list sour
e &optional (pulse�list nil pulse�list�supplied) [Fun
tion℄This adds a 'PULSE-LIST entry to the SOURCE :PARAMETERS, where the format of PULSE-LIST is either:(pulse-1 pulse-2 ...)or for just a single pulse:pulseand the format of ea
h spe
i�
 pulse is as follows:(start-time stop-time magnitude), e.g. (4 6 .1)where the magnitude for 
urrent sour
es is in nA, and for voltage sour
es is in mV. For example,(pulse-list "9-pyr-soma-isr
" '((120.0 170.0 0.5) (220.0 270.0 -0.5)))(pulse-list *isour
e* '(10 20 1))



8 CURRENT AND VOLTAGE SOURCES 50The �rst example sets the 
urrent sour
e named "9-pyr-soma-isr
" to give a 50ms 0.5nA pulse starting at120ms, and a 50ms -0.5nA pulse starting at 220ms. The se
ond example spe
i�es a 1nA pulse from 10ms to20ms for the last 
reated 
urrent sour
e, assigned to *ISOURCE*.This fun
tion will also set the :USE-PULSE-LIST slot for the sour
e. As above, the magnitude for 
urrentsour
es is in nA, and for voltage sour
es the magnitude is in mV. The time units are in millise
onds. Thisfun
tion also has no e�e
t on whether a de�ned pulse train is referen
ed. If the only argument is the sour
e,then the 
urrent pulse list spe
i�
ation is returned.The value of the sour
e voltage for voltage sour
es during times outside of the spe
i�ed waveform is givenby the global variable *VCLAMP-DEFAULT-MAGNITUDE* (mV). The analagous value for 
urrent sour
es is 0.0.In general, pulse sequen
es should be de�ned so that they are "well-behaved", that is the durations donot overlay (they 
an be 
ontiguous, however). Surf-Hippo will attempt to synthesize waveforms that "makesense" given various pulse sequen
es, but if there is any doubt you should verify the resulting waveform bythe plotted output of the sour
e (this is an option also when you edit the stimulus).For example, the following pulse sequen
e is ok:((10.0 20.0 2.0) (20.0 22.0 -5.0))If a pulse is de�ned or edited (e.g. via the menus) with the stop time less than or equal to the start time,then that pulse is ignored. This is 
onvenient, for example, when a multiple pulse stimulus is de�ned.Sele
ted pulses in the train may be temporarily disabled simply by making the stop time negative, withoutthe ne
essity of removing the pulse or 
hanging any other pulse parameters. If the stop time of a pulse isgreater than the stop time of the simulation, then that pulse is ignored.Pulse trains may be examined or added by:pulse-train sour
e &optional (start nil start�supplied) stop delay duration period ampli-tude [Fun
tion℄8.4 Spe
ifying WaveformsWaveforms may be added by:add-waveform destination &key waveform�spe
(waveform�time�interval *default�waveform�step*) delay use�menu
oat�input [Fun
tion℄This loads a sour
e with a waveform and its timebase information. WAVEFORM-SPEC is either a se-quen
e of numbers or a fun
tion spe
i�
ation (lambda list). If not in
luded, or if WAVEFORM-SPEC isa fun
tion spe
 and USE-MENU is T, the fun
tion WAVEFORM-MENU is 
alled. Resulting waveformarray is put into :WAVEFORM-ARRAY slot of SOURCE. WAVEFORM-TIME-INTERVAL (ms, default*DEFAULT-WAVEFORM-STEP*) must be appropriate for a WAVEFORM-SPEC that is either a number se-quen
e or fun
tion spe
. DELAY, when not NIL (default) is in millise
onds, and sets the sour
e :DELAYslot dire
tly. SOURCE may also be an ele
trode, in whi
h 
ase the a
tual sour
e is extra
ted with thefun
tion ELECTRODE-SOURCE. If WAVEFORM-SPEC is a fun
tion spe
, then it is expe
ted that this fun
tionwill return a number sequen
e. For example:(add-waveform *isour
e* :waveform-spe
 '(sinewave 1 10 .10 :phase 35 :step 0.2)Note that the waveform fun
tion spe
i�
ation is e
hoed when you print the sour
e 
hara
teristi
s:* (print-element *isour
e*)Isour
e Hippo-soma-isr
 (Rint 0.0Mohms, slope 100.0nA/mse
)SINEWAVE args: AMPLITUDE 1, DURATION 10, FREQUENCY 0.1, OFFSET 0.0, START 0.0, PHASE 35, STEP 0.2On the other hand, if WAVEFORM-SPEC is an expli
it number sequen
e:
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e*:waveform-spe
 '(0.0 1.0 2.0 1.0 0.0 -1.0 0.0):WAVEFORM-TIME-INTERVAL 1.0)NIL* (PRINT-ISOURCE *isour
e*)Isour
e Hippo-soma-isr
 (Rint 0.0Mohms, slope 100.0nA/mse
)Expli
it waveformHere are some waveform fun
tions that 
ome with Surf-Hippo - in general, the units for wave parameters aremillise
onds for time related units (e.g. STEP, DELAY, DURATION, TAU), and nA or mV for amplituderelated units (e.g. AMPLITUDE, OFFSET):sinewave &optional (amplitude 1.0) (duration *user�stop�time*) (frequen
y 1.0) &key(phase 0.0) (o�set 0.0) (step 0.2) (start 0.0) zero�before�start [Fun
tion℄exponential-array &optional (tau 1.0) (step 1.0) (length 0) (o�set 0.0) (amplitude 1.0)(start 0.0) [Fun
tion℄impulse-array &optional (amplitude 1.0) (duration 1) (delay 0) (step 1.0) [Fun
tion℄alpha-array &optional (tau 1.0) &key (time�exponent 1) (adjustment :normalize) (step1.0) (duration 0.0) (o�set 0.0) (amplitude 1.0) (delay 0.0) [Fun
tion℄double-alpha-array &optional (tau1 1.0) (tau2 1.0) (alpha�proportion 1.0) &key (o�set0.0) (step 1.0) (tau1�alpha�area 1.0) (start 0.0) [Fun
tion℄double-exponential-array &optional (tau�rise 1.0) (tau�fall 1.0) &key (amplitude 1.0)normalize (step 1.0) (length 0) (o�set 0.0) (start 0.0) [Fun
tion℄8.5 Sour
e Resistan
e - Ideal Voltage Sour
esBoth 
urrent and voltage sour
es may have a non-zero internal resistan
e, whi
h as a �rst approximationrepresents the ele
trode resistan
e. For nodes with 
urrent sour
es, the voltage measured at the node willbe o�set by the IR drop a
ross this resistan
e (given by the variable *ISOURCE-ELECTRODE-RESISTANCE*[Mohms, default 0℄ when the sour
e is 
reated, and whi
h may be edited with the menus). For voltage sour
es,the sour
e resistan
e (given by the variable *VSOURCE-RESISTANCE* [Mohms, default 0.001 or 1Kohms℄ whenthe sour
e is 
reated, and whi
h may be edited with the menus) models the non-ideal voltage 
lamp. Thevoltage sour
e resistan
e for non-ideal sour
es must be >0, sin
e the 
ir
uit integration treats voltage sour
esas a (typi
ally very large) membrane 
ondu
tan
e in series with a 
ontrolled (time-varying) battery.For a more sophisti
ated model of sour
es, see the dis
ussion on Ele
trode Model below.Ideal voltage sour
es (
reated by default), on the other hand, by de�nition have zero internal resistan
e.To toggle a voltage sour
e between ideal and non-ideal, use the fun
tions:ideal-vsour
e vsour
e [Fun
tion℄
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e vsour
e &optional resistan
e [Fun
tion℄Cir
uits with nodes that have ideal voltage sour
es are solved by 
reating a new 
ir
uit matrix in whi
h thesenodes have been removed. The nodes adja
ent to these nodes still have a 
urrent and ja
obian (from the
onne
ting segment axial resistan
e) 
ontribution from the removed nodes, as if those nodes were still there.Any membrane elements on the removed nodes are evaluated with referen
e to the value of the asso
iatedideal voltage sour
e (see also Se
tions 33 and 35).8.6 Sour
es May Be En/DisabledSour
es may be enabled or disabled either via the stimulus menus, or using the fun
tions ENABLE-ELEMENTor DISABLE-ELEMENT (see Se
tion 4.14).8.7 Voltage Sour
e Current DataThe fun
tion GET-VSOURCE-CURRENT obtains the voltage sour
e 
urrent in various ways:� If the sour
e is non-ideal, and the global variable *VSOURCE-INTRINSIC-CURRENT* is T, then the 
urrentis 
al
ulated using the voltage drop between the sour
e and the sour
e node, 
onsidering the sour
eresistan
e. Otherwise, the 
urrent is summed over all the elements 
onne
ted to the sour
e node.� If *INCLUDE-VSOURCE-CURRENT-LINEAR-AND-NON-LOCAL-COMPONENT* is NIL (default T), then the setof elements for summing the 
urrent does not in
lude the sour
e node leak resistan
e, the sour
e node
apa
itan
e, and the segments and/or soma that are 
onne
ted to the sour
e node. If the sour
e nodeis the only node with non-linear elements, then the resulting voltage sour
e 
urrent is similar to whatis obtained experimentally when the "linear 
omponent" of the voltage 
lamp 
urrent is subtra
tedfrom the re
ord.� If *INCLUDE-LOCAL-CAP-CURRENT-IN-VSOURCE* is NIL (default T), then the sour
e node 
apa
itan
e
urrent is ignored.8.8 Stability of Voltage Sour
esThere are some subtleties vis-a-vis the integration and the (non-ideal) voltage sour
e model that requirefurther debugging. This shows up as (apparently) bounded os
illations in the voltage of the node with thesour
e, and the sour
e 
urrent. These os
illations are more pronoun
ed with non-pulse sour
e waveformsand variable time step integration. The os
illations are also larger with smaller sour
e resistan
e.For the present we re
ommend 
onservative setting of the numeri
al parameters, in parti
ular a smallvalue for the global variable *USER-MAX-STEP* (default is 0.15 ms, but a better value in this 
ase 
ould be0.01ms) when using a variable time step, or a similar value for a �xed time step, e.g.:(setq *USE-FIXED-STEP* t*USER-STEP* 0.01)See also the dis
ussion "Choosing Parameters for Numeri
al Integration" in the Se
tion 27. Also see thedis
ussion "Voltage Errors" in Se
tion 35.Sin
e the e�e
tive sour
e resistan
e for ideal voltage sour
es is of the same order of magnitude as the treestru
ture (sin
e the sour
e "resistan
e" as seen by the 
ir
uit is taken from the appropriate segment axialresistan
e), we have not as yet observed stability problems with ideal voltage sour
es. Thus, in pra
ti
e, thein
lusion of an ideal voltage sour
e poses no additional 
onstraints on the time step parameters.8.9 Ele
trode ModelFor adding a simple ele
trode model with a 
urrent or voltage sour
e, respe
tively, to a node:
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trode element &key (
apa
itan
e 0.001)(resistan
e 1.0e+7) (sour
e�resistan
e 0.0) (leak�resistan
e 1.0d+16)name [Fun
tion℄add-vele
trode element&key (
apa
itan
e 0.001) (resistan
e 1.0e+7) (sour
e�resistan
e 0.0)(leak�resistan
e 1.0d+16) name [Fun
tion℄These fun
tions add the ele
trode model illustrated in Figure 2 to CELL-ELEMENT. RESISTANCE andSOURCE-RESISTANCE are in ohms, and CAPACITANCE is in nanofarads. If CELL-ELEMENT is asegment, then the ele
trode is added to the distal node of the segment. If NAME is not given, the name ofthe ele
trode is taken from the name of the CELL-ELEMENT, with "-ele
trode" added. In fa
t, the a
tual
ir
uit in
ludes a linear 
ondu
tan
e (1.0�10 uS) in parallel with the 
apa
itan
e, but this is small enoughso that it may be ignored. SOURCE-RESISTANCE, the internal resistan
e of the 
urrent or voltage sour
e,is also in
luded in the ele
trode model (essentially the sour
e added to the ele
trode here is no di�erentfrom any other sour
e added to a 
ell). Thus, it may be important to adjust the sour
e intrinsi
 resistan
ea

ordingly. In some situations, the ele
trode will be lumped together with the 
ell segments, for examplewith the plot output. This is be
ause the ele
trode model is a spe
ial 
ase of the segment model.
Voltage Source
Current or

Ground Ground

SOURCE-RESISTANCE (ohms)

CAPACITANCE (nF)

RESISTANCE (ohms)

CELL-ELEMENT

Figure 2: The ele
trode model generated by ADD-IELECTRODE and ADD-VELECTRODE.edit-ele
trodes &optional ele
trode [Fun
tion℄This fun
tion allows dire
t menu editing of the ele
trode(s) axial and "membrane" resistan
e, and 
apa
i-tan
e.set-ele
trode-
apa
itan
e 
�ele
trode &optional (ele
trode *ele
trode*) [Fun
tion℄This sets the 
apa
itan
e of the optional ELECTRODE argument to C-ELECTRODE (nF). If ELECTRODEis not supplied, then the value of *ELECTRODE* will be used.set-ele
trode-resistan
e r�ele
trode &optional (ele
trode *ele
trode*) [Fun
tion℄Sets the resistan
e of the optional ELECTRODE argument to R-ELECTRODE (Mohms). If ELECTRODEis not supplied, then the value of *ELECTRODE* will be used.Here is an example of a s
ript that tests the e�e
t of various ele
trode parameters of the voltage measuredat the ele
trode (assuming that the proper plotting parameters have already been set up, perhaps with themenus):(loop for r-ele
trode in '(0.01 5.0 10.0 50.0) do(loop for 
-ele
trode in '(0.0001 0.001 0.01) do(set-ele
trode-
apa
itan
e 
-ele
trode)(set-ele
trode-resistan
e r-ele
trode)(goferit)))



8 CURRENT AND VOLTAGE SOURCES 548.10 Voltage Clamp InitializationUnder 
ertain 
onstraints, simulations with voltage sour
es may be initialized so that the node voltages
orrespond to a steady-state 
ondition where the voltage sour
e or sour
es are set to their initial value. Thisinitialization avoids a transient at the start of the simulation whenever the initial voltage sour
e voltage isdi�erent from the normal initial voltage of the 
ir
uit.The steady-state algorithm sets all the node voltages in a single step, under the 
ondition that all 
hannelsand synapses are blo
ked. This algorithm works for 
ells with a single voltage sour
e that is either at thesoma, or part of an ele
trode whi
h in turn is 
onne
ted to the soma. Future versions of this algorithm willbe appropriate for the more general 
ase, i.e. more than one voltage sour
e, or sour
es at arbitrary lo
ationsin the dendriti
 tree.The variable*steady-state-linear-v
lamp-enable* t [Variable℄enables this option.8.11 Some ExamplesThis form adds a 
urrent sour
e (not the ele
trode model) to all the somas in the 
ir
uit, and gives ea
h ofthem a pulse of 1nA starting from 0 millise
onds until 0.5 millise
onds:(loop for soma in (somas) do (pulse-list (add-isour
e soma) '(0.0 0.5 1.0)))8.12 Adding a Constant Current Sour
e to Somas or SegmentsThe fun
tionadd-
onstant-
urrent-to-element element 
urrent [Fun
tion℄adds a 
onstant CURRENT [nA℄ to the soma or segment ELEMENT for the duration of the simulation.This is equivalent to in
luding a 
urrent sour
e at the element that has a �xed DC value. Likewise, thefun
tions
lear-element-
onstant-
urrent element [Fun
tion℄
lear-
onstant-
urrents [Fun
tion℄removes the 
onstant 
urrent term from either a given node or all the 
ir
uit nodes, respe
tively.8.13 The Voltage Re
orded at Current Sour
e Nodes: Bridge Balan
eCurrent sour
es have two additional parameters - an internal sour
e resistan
e (M
, in the :RESISTANCEslot) and a :BRIDGE-BALANCE setting (M
, stored in the sour
e's :PARAMETERS). These parameters, whi
hmay be 
hanged from the EDIT-ISOURCE menu, e�e
t only the voltage measured at the sour
e node, asshown in Table 2. If there is more than one 
urrent sour
e asso
iated with NODE, then these 
orre
tionsare disabled.8.14 Steady State Voltage Clamp at the SomaSteady-state voltage 
lamp experiments are more 
onveniently run using the fun
tion:



8 CURRENT AND VOLTAGE SOURCES 55:ENABLE-ISOURCE-DROP :ENABLE-BRIDGE-BALANCE Vr(t)NIL NIL V (t)T NIL V (t) + (I(t) �Rint)NIL T V (t)� (I(t) �Rbridge)T T V (t) + (I(t) �Rint)� (I(t) �Rbridge)Table 2: Cal
ulation of re
orded 
urrent sour
e node voltage, taking into a

ount sour
e resistan
e and bridgebalan
e. Vr(t) is the measured node voltage, V (t) is the a
tual node voltage, Rint (M
) is the 
urrent sour
einternal :RESISTANCE,Rbridge (M
) is the 
urrent sour
e :PARAMETERS :BRIDGE-BALANCE. Note that the sour
enode may be represent a soma, segment, or ele
trode. If there is more than one 
urrent sour
e asso
iated withthe sour
e node, then these 
orre
tions are disabled.steady-state-v
lamp v�holding &key (vsour
e *vsour
e*) [Fun
tion℄When the vsour
e is at the soma, the initial voltage for all 
ell nodes is set a

ording to an imposed holdingpotential at the soma, and only linear 
able/membrane properties. With the latter assumption the starting
onditions (potentials) may be found qui
kly by �rst 
al
ulating (iteratively, from distal to proximal) andstoring the equivalent terminating (end) resistan
e 
onne
ted to the distal node of ea
h segment. With thisinformation, the segment voltages may be assigned (iteratively, from proximal to distal) in one pass throughthe dendriti
 tree. These steps are performed by the fun
tion:steady-state-linear-voltage-
lamp vsour
e &optional holding�potential [Fun
tion℄A future revision will apply this algorithm for voltage sour
es lo
ated anywhere in the 
ell.8.15 Multiple Current Sour
e TargetsThe output of a given 
urrent sour
e will be applied to more than one 
ir
uit node when there is a 
ir
uitelement or list of 
ir
uit elements stored as a 'TARGETS element parameter for the sour
e. For example,(element-parameters *isour
e* 'targets (segments))will 
ause the output of the last de�ned 
urrent sour
e to be applied to all the segments in the 
ir
uit. Notethat if the 'TARGETS spe
i�
ation in
ludes the original 
ir
uit element of the sour
e, then that soma orsegment will re
eive twi
e the a
tual output of the sour
e.



9 LIBRARIES FOR ELEMENT TYPE TYPES AND PARAMETER SAVING 569 Libraries for Element Type Types and Parameter SavingThe parameters for the various element type types - 
ell types, 
hannel types, synapse types, parti
le types,
on
entration dependent parti
le types, 
on
entration integrator types, axon types, pump types, and bu�ertypes - are referen
ed from parameter libraries spe
i�
 to ea
h type. This se
tion des
ribes the system fora

essing/storing parameter libraries. See also Se
tions 10, 11, 15 and 4.9.1 Global Parameter Lists As Element Type Referen
e LibrariesEa
h of the libraries for the element type types (organized as asso
iation lists for ea
h type) are stored inea
h element type model :PARAMETER-TYPE-LIBRARY. The format and ne
essary and optional entries for agiven element type 
an be found in the appropriate se
tion of this manual.The 
urrent entries of ea
h library 
an be found withlibrary-
atalog element [Fun
tion℄whi
h returns a list of all types in the type library referen
ed by ELEMENT.9.2 Element Type De�nition (Type-Def) Ma
ros For Updating Parameter Li-brariesNormally, the user need not dire
tly manipulate these parameters libraries. Rather, adding (and updating)a new entry of a given element type to the appropriate library is done with the various Type-Def ma
ros,in
luding:
hannel-type-def body [Ma
ro℄as well asPARTICLE-TYPE-DEF CONC-PARTICLE-TYPE-DEFSYNAPSE-TYPE-DEF CONC-INT-TYPE-DEFBUFFER-TYPE-DEF PUMP-TYPE-DEFAXON-TYPE-DEF CELL-TYPE-DEFThe BODY of ea
h Type-Def ma
ro is a quoted list whose �rst element is the name (typi
ally a symbol) ofan element type, followed by an asso
iation list of parameters spe
i�
 to that sort of element type. Thus:(FOO-TYPE-DEF`(type-name(parameter . value)(parameter . value)...(parameter . value)))where the TYPE-NAME symbol is that used by any 
alls to CREATE-FOO-TYPE or CREATE-FOO (or in general,using something like (CREATE-ELEMENT 
ell-element TYPE-NAME)). Unless spe
i�
ally mentioned in thismanual, the ordering of the parameter lists in the Type-Def form is not important. On the other hand, the"." in ea
h parameter sub-list is important, sin
e these lists are 
onsidered elements of an asso
iation list(this is essentially a detail of Lisp).For example, the following form:(synapse-type-def`(basi
-depressing(parent-type . auto-fast-ex-double-exp-abs)(1st-order-depressing-dynami
s . t)(tau-re
overy . 800) ;ms(release-fra
tion . 0.2)))
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urrent entry in :PARAMETER-TYPE-LIBRARY slot of the SYNAPSE-TYPE model stru
ture whoseCAR (�rst element) is the symbol BASIC-DEPRESSING, and then adds the new entry to this list. Subsequently,a 
all to:(
reate-element 'BASIC-DEPRESSING)will sear
h the :PARAMETERS-TYPE-LIBRARY slot for an entry whi
h starts with BASIC-DEPRESSING, and thenuse the asso
iated parameters to 
reate the synapse type (Se
tion 4.2). Likewise,(
reate-element 'BASIC-DEPRESSING ``J43D-201'')will 
reate a BASIC-DEPRESSING synapse on the 
ell element named \J43D-201" - if the BASIC-DEPRESSINGsynapse type doesn't exist yet, then it will be 
reated �rst, as above.9.3 Type-Def Parameter Keywords and Stru
ture SlotsIt is often the 
ase that a parameter keyword in the Type-Def form of a parti
ular element type 
orrespondsdire
tly with a slot of the same name in that element type's stru
ture. Thus, in the text of this Manualthe signi�
an
e of a given Type-Def parameter may usually interpreted as being assigned dire
tly to the
reated type stru
ture. Otherwise, the relation between the Type-Def parameter and the 
hara
teristi
s ofthe 
reated element type should be 
lear. In 
ase of ambiguity, one should refer to the stru
ture de�nitionsin sr
/sys/stru
tures.lisp, or use the DESCRIBE on a given instan
e of a type stru
ture.For example, the PARTICLE-TYPE-DEF for a gating parti
le asso
iated with a model of the T-type 
al
ium
hannel (sr
/parameters/working-hp
.lisp) is given by:(parti
le-type-def`(CA-TM-HPC(
lass . :HH-EXT)(valen
e . 3.0)(gamma . 0.0)(base-rate . 1.0)(v-half . -36.0)(tau-0 . 1.5)(IGNORE-TAU-VOLTAGE-DEPENDENCE . T)(referen
e-temp . 27.0)(qten . 1.0)))Many of these parameters are dire
tly re
e
ted in the PARTICLE-TYPE stru
ture:* (des
ribe (element 'CA-TM-HPC))<Parti
le Type CA-TM-HPC> is a stru
ture of type PARTICLE-TYPE.NAME: "CA-TM-HPC".CLASS: :HH-EXT.Q10: 1.0.REFERENCE-TEMP: 27.0.NUMBER-OF-STATES: NIL.STATE-TRANSITION-ARRAY: NIL.OPEN-STATE-ARRAY: NIL.TAU-ARRAY: #(1.5 1.5 1.5 1.5 1.5...).INF-ARRAY: #(1.7983902e-6 1.819381e-6 1.8406183e-6 1.8621017e-6 1.8838377e-6...).Z: 3.0.GAMMA: 0.0.BASE-RATE: 1.0.V-HALF: -36.0.TAU-0: 1.5.IGNORE-TAU-VOLTAGE-DEPENDENCE: T.ALPHA-FUNCTION: NIL.



9 LIBRARIES FOR ELEMENT TYPE TYPES AND PARAMETER SAVING 58BETA-FUNCTION: NIL.TAU-COEFFICIENT: 1.0.TAU-FUNCTION: NIL.SS-FUNCTION: NIL.FIRST-PARTICLE: <Parti
le HPC-soma-CA-T-HPC-CA-TM-HPC: type CA-TM-HPC>.PARAMETERS: ((SOURCE . "/usr/lo
al/surf-hippo/bin/parameters/working-hp
.spar
f")(QTEN . 1.0) (REFERENCE-TEMP . 27.0)(IGNORE-TAU-VOLTAGE-DEPENDENCE . T) (TAU-0 . 1.5) ...).9.4 Sour
e Files are Automati
ally RegisteredThe Type-Def ma
ros above also store the name of the sour
e (or obje
t) �le of the de�nition, in an entrydenoted by SOURCE. This information (typi
ally displayed in the EDIT-ELEMENT or PRINT-ELEMENT routines)may be useful for tra
king down some obs
ure element long after it is loaded.9.5 Inheritan
e of TypesThe following element type types may be 
reated with referen
e to a "parent type":CHANNEL-TYPEPARTICLE-TYPECONC-PARTICLE-TYPECONC-INT-typeBUFFER-TYPEPUMP-TYPESYNAPSE-TYPEAXON-TYPEThis me
hanism requires that the appropriate Type-Def form in
lude a PARENT-TYPE entry:(thing-type-def'(NEW-THING(some-parameter . value)...(parent-type . SOME-OTHER-TYPE)...(another-parameter . value)))Thus, when an instan
e of 'NEW-THING is 
reated, it is built upon the parameters de�ned (in anotherType-Def form) for 'SOME-OTHER-TYPE. This base is then modi�ed with any parameters in
luded in theType-Def form for 'NEW-THING. The parent-type me
hanism may be non-re
usively nested. Note that for agiven element type, the required parameters in the asso
iated Type-Def form must be satis�ed at minimumin the lowest parent-type of the new type.When a parent-type is in
luded in a Type-Def form, the parent type is not 
reated expli
itly - there willbe no instan
e of the parent type unless it was 
reated by a top-level 
reate 
all spe
i�
 to the parent type.For a given TYPE instan
e, the PARENT-TYPES entry in the :PARAMETERS slot, e.g. as returned by:(element-parameters TYPE 'parent-types)has a list of the an
estor parent type symbols, if any, with the immediate parent �rst. These symbols maythem be referen
ed to the element type library in order to see the original 
hain of de�nitions.9.6 Saving Loadable Element Type ParametersThe following element types have routines, 
alled by:



9 LIBRARIES FOR ELEMENT TYPE TYPES AND PARAMETER SAVING 59do
ument-element element &optional model�type [Fun
tion℄whi
h will write loadable Type-Def forms as above whi
h in
lude the 
urrent values of a type's parameters:CHANNEL-TYPEPARTICLE-TYPECONC-PARTICLE-TYPESYNAPSE-TYPECONC-INT-TYPEThe following element types also have a do
umentation routine whi
h writes out Lisp-loadable forms basedon CREATE-thing type of fun
tions that referen
e the 
urrent 
ir
uit:CHANNELSYNAPSEVSOURCEISOURCEEdits of an element type during a simulation may be saved for use later from the menus (sele
t \Informationmanagement" from the main menu) or using the fun
tion:dump-elements-�le &optional elements�or�sele
t�ea
h�element [Fun
tion℄This fun
tion writes a loadable �le with Type-Def forms for sele
ted (loaded) elements whi
h are elementtypes, and CREATE forms for sele
ted elements su
h as 
hannels, synapses, or sour
es. Sele
ted elementsare determined by the ELEMENT-OR-SELECT-EACH-ELEMENTS argument - this arg 
an be either asingle element, a list of elements, non-NIL (generating a sele
tion menu, or NIL (default) whi
h will sele
tall loaded elements.Loadable Type-Def forms are written to the /data dire
tory with a �lename 
onstru
ted from the simu-lation name and the date (see Se
tion 21), with the extension ".elts".9.7 Updating Existing Element Type Types from the Parameter LibrariesIt is important to remember that on
e an element type is 
reated, any subsequent referen
es to that type(su
h as 
reating a synapse of a given type) will refer to the existing stru
ture, not the 
urrent value of theparameter library entry. If you want to update the library (by loading the appropriate Type-Def form) andhave that 
hange re
e
ted in subsequent referen
es to the type, then you must 
all:update-type-from-de�nition element [Fun
tion℄whi
h updates the ELEMENT type from the most re
ently loaded library de�nition. Note that if it is desiredto set to NIL a parameter in
luded in a previous library entry, then that parameter must be expli
itly in
luded(and given a NIL value) in the updated library (that is in the new Type-Def form).For example, assume that an original parti
le type Type-Def was as follows:(parti
le-type-def`(n-foo(
lass . :hh)(tau-fun
tion . 30) ; Constant fixed value for time 
onstant in ms.(alpha-fun
tion . ,#'(lambda (voltage)(let ((v+3 (- voltage -3)))(/ (* 0.003 v+3) (- 1 (exp (/ v+3 -8)))))))(beta-fun
tion . ,#'(lambda (voltage)(let ((v+30 (- voltage -30)))(/ (* -0.0002 v+30) (- 1 (exp (/ v+30 80)))))))))



9 LIBRARIES FOR ELEMENT TYPE TYPES AND PARAMETER SAVING 60Now, suppose we want to rede�ne this parti
le type so that the tau is de�ned 
ompletely by the alpha andbeta fun
tions. Normally, this is a

omplished by leaving out the tau-fun
tion entry in the Type-Def.However, in order to revamp an existing parti
le type N-FOO, it is ne
essary to in
lude an expli
it NIL entryfor tau-fun
tion:(parti
le-type-def`(n-foo(
lass . :hh)(tau-fun
tion . NIL)(alpha-fun
tion . ,#'(lambda (voltage)(let ((v+3 (- voltage -3)))(/ (* 0.003 v+3) (- 1 (exp (/ v+3 -8)))))))(beta-fun
tion . ,#'(lambda (voltage)(let ((v+30 (- voltage -30)))(/ (* -0.0002 v+30) (- 1 (exp (/ v+30 80)))))))))On
e this new Type-Def is loaded, a 
all to(UPDATE-TYPE-FROM-DEFINITION 'N-FOO)will set up the desired behaviour.



10 MEMBRANE ELEMENTS 6110 Membrane ElementsThis se
tion des
ribes properties of all 
ir
uit elements that a�e
t the ele
tri
al properties of the membrane,in
luding the passive membrane 
omponents of somas and segments, 
hannels and synapses. Mu
h of thistext is taken from Borg-Graham 1999. See also Se
tions 9, 13 and 11.10.1 Models of Pore Condu
tionIn this se
tion we will des
ribe various models for non-linear 
hannel (and synapse) 
ondu
tion. Thesemodels are at an intermediate level of biophysi
al detail, appropriate for des
ribing whole 
ell 
urrents.For a given 
urrent IX , the most 
ommon models for the underlying 
hannel are based on the assumptionof a gated, membrane-spanning ionophore, where the me
hanism of 
ondu
tion f(V;�[X ℄) (
ow of ions downa voltage gradient), and that of gating h(V; t; :::) (voltage and/or ligand dependent modulation of 
ondu
tion)are separable: IX = h(V; t; :::) f(V;�[X ℄)Where V is the membrane voltage, t is time and �[X ℄ represents the 
on
entration gradients for the perme-able ions of the 
hannel or synapse. The ellipsis in the argument of h() stands for the various ligand-dependentpro
esses (e.g. Ca2+-dependen
e). The gating term h() for 
hannels is dis
ussed in Se
tion 11.Here we review two models of the 
ondu
tion term f(V;�[X ℄): ohmi
 (thermodynami
 equilibrium
ondu
tion) and 
onstant-�eld permeation (non-equilibrium 
ondu
tion).10.1.1 Linear Condu
tan
e: Driving For
e From Equilibrium Thermodynami
sIn most 
ell models 
hannel 
ondu
tion is taken as ohmi
 (linear), with the driving for
e determined by themembrane voltage, �[X ℄, and the relative permeabilities of the ions that pass through the 
hannel. Thegeneral form of the ohmi
 model is: f(V;�[X ℄) = gX (V �EX)where, assuming that the units of f() are in nanoamperes, gX is the absolute 
ondu
tan
e in �S and EXis the reversal potential for the 
hannel, the latter given by either the Nernst equation if only one ion isinvolved, or the Goldman-Hodgkin-Katz (GHK) voltage equation (e.g. Hille, 1992) for more than one ion(voltages in millivolts). In this model, the non-linearity of the 
ondu
tan
e term arises impli
itely from theNernst or GHK equation-based estimate of the driving for
e EX 
oupled with a non-zero 
hange in [X ℄ withrespe
t to IX . Thus, the more 
urrent, the more the 
on
entration gradient is redu
ed, resulting in negativefeedba
k. In pra
ti
e, many 
ell models that use the ohmi
 des
ription negle
t 
hanges in 
on
entration,under the assumptions that these a
tivity-driven 
hanges are small.The use of the Nernst equation for the driving for
e in the ohmi
 model is based on the assumptionof thermodynami
 equilibrium; stri
tly speaking this 
orresponds to the situation in whi
h no 
urrent is
owing. Thus this des
ription is more appropriate for those ions in whi
h the 
on
entration gradient is notvery high and the integrated 
urrents are small 
ompared to the relevant 
on
entrations. These 
onditionsare approximated for K+ and Na+, whi
h is similar to saying that these ions are 
loser to equilibrium.Although widely used (as in all the non-Ca2+ 
hannel des
riptions we shall present here), the validity ofthis approximation for des
ribing non-equilibrium 
onditions (that is, when the neuron is doing somethingele
tri
ally) has not been systemati
ally tested.10.1.2 Setting Erev for Ohmi
 Channel ModelsThe most basi
 way to determine the ions asso
iated with a parti
ular 
hannel experimentally is by estimatingthe reversal potential and relating that value to that expe
ted from the Nernst or GHK voltage equations.Manipulating the 
on
entrations of spe
i�
 ions and 
omparing the 
hange in the reversal potential with thatpredi
ted by these equations may also be done. Espe
ially for the 
ase of K+ 
hannels, there is a di
hotomybetween the experimental values for Erev and that used by many models, in that in the former 
ase themeasured Erev is rarely that predi
ted for a pure K+ 
ondu
tan
e, whereas in the latter 
ase models often
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hannels share the same Erev = EK . A more 
exible approa
h is to allow the Erev fornominally K+ 
hannels to be set to within a maximum of 20 millivolts or so above the Nernst EK (typi
allythis is -90 to -95mV), a range typi
ally seen in the data. We have found that this additional free parameterallows for some useful �ne tuning in the shape of the afterpotentials.We may note as well that the value of EK (and sometimes ENa) in some models is not given expli
itly,despite the fa
t that there are no reliable 
anoni
al values, and variations in these parameters 
an have asigni�
ant e�e
t on 
ell behaviour.10.1.3 Constant Field Condu
tion ModelAs a parti
ular ion moves farther from equilibrium (spe
i�
ally the 
ase for Ca2+), the ohmi
 model be
omesless a

urate. One of the most widely used non-equilibrium models of pore 
ondu
tion permeation is the
onstant �eld model, des
ribed by the Goldman-Hodgkin-Katz (GHK) 
urrent equation. In this equation(see Ja
k et al., 1983 and Hille, 1992), the non-linearity of the permeation term is expli
it:f(V;�[X ℄) = pX V z2F 2RT [X ℄in � [X ℄out exp(�zFV=RT )1� exp(�zFV=RT )where, again assuming that the units of f() are in nanoamperes, R is the gas 
onstant, F is Faraday's
onstant, T is temperature in degrees Kelvin, pX is the permeability (not the 
ondu
tan
e) of the 
hannel in
m3/se
ond, [X ℄in and [X ℄out are the intra
ellular and extra
ellular 
on
entrations in millimolar and z is thevalen
e of the permeant ion - here we assume that 
hannel 
ondu
tion is mediated by only one type of ion.The non-linear behaviour of this term manifests itself as negative feedba
k for inward 
urrents, parti
ularlyCa2+ (e.g. Hess and Tsien, 1984), both be
ause of the sublinear 
hara
teristi
 at typi
al values of [Ca2+℄ andbe
ause the driving for
e is redu
ed as the gradient of [X ℄ is redu
ed with 
urrent 
ow. We note, however,that the dynami
 
hange of this 
hara
teristi
 due to typi
al 
on
entration 
hanges is not very large.10.2 Deriving the Reversal Potential for Channels and SynapsesReversal potentials are determined by either �xed values or in referen
e to intra- and extra
ellular 
on
en-trations of ions whose relative 
ontributions are given in the :ION-PERMEABILITIES slot.In a CHANNEL-TYPE-DEF or SYNAPSE-TYPE-DEF form, the presen
e of E-REV and/or USE-DEFINED-E-REVentries set up the method for the reversal potential 
al
ulation:E-REV USE-DEFINED-E-REV Method :USE-DEFINED-E-REV slot---------------------------------------------------------------------------------number no entry Referen
e fixed value Tno entry N/A Referen
e ion permeabilities nilN/A nil Referen
e ion permeabilities nilIn the last 
ase, there must be an ION-PERMEABILITIES (or ION-PERMS) entry in the Type-Def form. Thisentry is either a single symbol 
orresponding to the ion type (if the pore is only permeable to that ion);(
hannel-type-def'(bar...(ion-perms . na)...))or a list of ions with asso
iated relative permeabilities:(
hannel-type-def'(foo...(ion-perms . ((K 0.85) (NA 0.15)))...))
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on
entrations (as spe
i�ed by the ion permeabilities) are taken from asso
iated 
on
entrationintegrators or the appropriate 
ell type 
on
entrations, or global values for 
on
entrations.Thus, for a given 
hannel or synapse type, when :USE-DEFINED-E-REV is nil and :ION-PERMEABILITIESis set to a ion permeability list, reversal potential is set with the fun
tion EFFECTIVE-REVERSAL-POTENTIAL:e�e
tive-reversal-potential ion�perms &optional element [Fun
tion℄Cal
ulate reversal potential based on ion-permeabilities and the asso
iated reversal potentials, whi
h in turnreferen
e the appropriate 
ell type or the DEFAULT-ION-REVERAL-POTENTIAL:default-ion-reversal-potential spe
ies &optional value [Fun
tion℄This sets the default (�xed) reversal potential for ion SPECIES (NA, K, CL, CA, MG) if VALUE [mV℄supplied. Returns the 
urrent value.10.3 Deriving the Maximum Condu
tan
e for Channels and SynapsesThe :GBAR, or maximum (peak) 
ondu
tan
e of an individual 
hannel or synapse may be determined eitherby the area of the asso
iated 
ell element and 
ondu
tan
e density (:GBAR-DENSITY), or by a �xed 
onstantvalue (either :GBAR-REF or :GBAR). The method used depends on the :GBAR-SOURCE slot, whi
h should beeither :DENSITY or :ABSOLUTE. In either 
ase, the �nal value of :GBAR is 
al
ulated by referen
e to therelevant type (
hannel type or synapse type) if the :INHERIT-PARAMETERS-FROM-TYPE slot for the 
hannelor synapse is T, or from the 
hannel or synapse itself. In summary, given a 
hannel or synapse ELT, the
al
ulation of the �nal :GBAR is given in the following table.------------------------------------------------------------------------------------------:INHERIT-PARAMETERS-FROM-TYPE T T NIL NILslot of ELT------------------------------------------------------------------------------------------:GBAR-SOURCE slot :DENSITY :ABSOLUTE n/a n/aof ELT type------------------------------------------------------------------------------------------:GBAR-SOURCE slot n/a n/a :DENSITY :ABSOLUTEof ELT------------------------------------------------------------------------------------------Gbar 
al
ulated :GBAR-DENSITY :GBAR :GBAR-DENSITY :GBAR-REFwith referen
e to of type of type of ELT of ELTThe �nal value for the ELT :GBAR is then taken from the density or absolute referen
e, taking into a
-
ount the appropriate 
ondu
tan
e :QTEN of the type (not that for the gating kineti
s), and multipliedby the 'GBAR-MODULATION entry in the type's :PARAMETERS. If there is no 'GBAR-MODULATION entry, thenthis is taken to be 1.0. Note that if a synapse or 
hannel type in
ludes a 'GBAR-MODULATION, then thisfa
tor applies to the synapses or 
hannels of that type whether or not the spe
i�
 instan
es have their:INHERIT-PARAMETERS-FROM-TYPE slot set.For example, with light synapses in whi
h the re
eptive �elds of the synapses are mapped retinotopi
allywith respe
t to their lo
ation on the 
ell (e.g. retina), then it may be more appropriate to use synapse typesin whi
h the peak 
ondu
tan
e is de�ned in terms of 
ell element area. For synapses who are a
tivatedindependently of ea
h other, then it may be more appropriate to use a type for whi
h there is a �xed peak
ondu
tan
e, and then de�ne (
reate) the appropriate number of individual instan
es of that synapse typeto a
hieve the desired synapti
 (
ondu
tan
e) density.The 
hannel or synapse type de�nition stored with CHANNEL-TYPE-DEF or SYNAPSE-TYPE-DEF 
an in
ludea GBAR-SOURCE entry (otherwise the default in :DENSITY). Also, these parameters may be edited in theEDIT-ELEMENT menu, 
alled on the 
hannel, 
hannel type, synapse or synapse type.



10 MEMBRANE ELEMENTS 6410.4 Setting Membrane Element ParametersThe following fun
tion spe
i�es various parameters for 
hannel and synapse types:iv-type-parameter element param &optional (value nil value�supplied�p) (update t) [Fun
tion℄whi
h is similar to ELEMENT-PARAMETER, but for examining/setting spe
i�
 parameters of the synapse or
hannel type asso
iated with ELEMENT. PARAM 
an be::IV-RELATION-SOURCE (e.g. :ABSOLUTE or :DENSITY):IV-RELATION-REF [for :ABSOLUTE gbar (uS) or permeability (
m3/se
)℄:IV-RELATION-DENSITY [pS/um2 (0.1mS per square 
m) for gbar, 1.0e-6 
m3/se
/um2 for permeability℄:IV-RELATION-MODULATION [applied to all type 
hildren, regardless of inheritan
e℄:E-REV [mV℄:BLOCKED [T or NIL℄If no new VALUE follows the PARAM, then the 
urrent value of the slot 
orresponding to PARAM isreturned. Supplying a non-nil value for UPDATE will 
ause the 
hange to propagate to the appropriateelements of the type asso
iated with ELEMENT.The following fun
tion spe
i�es an individual 
ondu
tan
e referen
e for 
hannels or synapses:set-element-absolute-iv-relation-ref element iv�referen
e [Fun
tion℄The ELEMENT argument 
an be either an instan
e of a synapse or a 
hannel, or the name of a synapseor a 
hannel. In SET-ELEMENT-ABSOLUTE-GBAR-REF, GBAR-REF is in �S. This fun
tion also resets the:INHERIT-PARAMETERS-FROM-TYPE slot of ELEMENT to NIL, so that the newly assigned values are notoverridden by the 
orresponding element type parameters. It returns the numeri
al se
ond argument. Toget the 
urrent value, use ELEMENT-GBAR.10.5 Updating Membrane Element Parameters that are Dependent on Tem-perature and Membrane AreaAt various points in the program 
ow, prior to the a
tual simulation, the fun
tion SET-CIRCUIT-ELEMENTS-PARAMETERSis 
alled. This fun
tion in turn 
alls fun
tions whi
h update element parameters whi
h may depend on mem-brane area or temperature. To see exa
tly what is updated for a given type of membrane or 
ell element,see the appropriate fun
tion de�nition as indi
ated in SET-CIRCUIT-ELEMENTS-PARAMETERS (ea
h updatefun
tion is found in the 
orresponding element type �le, e.g. the fun
tion SET-CHANNELS-PARAMETERS isde�ned in 
hannel.lisp). Many of these fun
tions are written so that element parameters are inherited fromthe appropriate element types, depending on the :INHERIT-PARAMETERS-FROM-TYPE slot as des
ribed above.If you want to disable this update for a 
ertain 
lass of elements, SETQ the appropriate global enablevariable:*ENABLE-SEGMENT-MEMBRANE-PARAMETER-UPDATE**ENABLE-SOMA-MEMBRANE-PARAMETER-UPDATE**ENABLE-CONC-INTEGRATOR-MEMBRANE-PARAMETER-UPDATE**ENABLE-CHANNEL-TYPE-MEMBRANE-PARAMETER-UPDATE**ENABLE-CHANNEL-MEMBRANE-PARAMETER-UPDATE**ENABLE-AXON-MEMBRANE-PARAMETER-UPDATE**ENABLE-SYNAPSE-MEMBRANE-PARAMETER-UPDATE*The default for these variables is T. It is likely that you will not need to 
hange these variables.10.6 Aribitrary Condu
tan
e Fun
tionsFor 
hannels and synapses an arbitrary 
ondu
tan
e 
oeÆ
ient may be applied to the standard evaluated
ondu
tan
e (or permeability) value by in
luding
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ondu
tan
e-fun
tion . fun
tion-name)in the CHANNEL-TYPE-DEF or SYNAPSE-TYPE-DEF. This fun
tion should take a single 
hannel or synapseargument, as appropriate, and return a single 
oat number. This value will then be used as a 
oeÆ
ient forthe evaluated 
ondu
tan
e value of the 
hannel or synapse.10.7 Stati
 Voltage Dependen
e of Condu
tan
esLikewise, the 
ondu
tan
e of a 
hannel or synapse 
an also have a stati
 dependen
e on the 
urrent voltage ofthe asso
iated node. Thus, on
e the 
hannel or synapse 
ondu
tan
e is determined by the standard methods,the result is then multiplied by the value obtained by the stati
 voltage dependen
e. This dependen
e isspe
i�ed when the type de�nition parameters stored with CHANNEL-TYPE-DEF or SYNAPSE-TYPE-DEF in
ludes:(stati
-voltage-dependen
e-fun
tion . (seq-fun
tion args ...))The form in SEQ-FUNCTION should return a sequen
e used as a look up table, whose index runs from -200(given by *PARTICLE-LOOK-UP-TABLE-MIN-VOLTAGE*) to 200 mV (given by *PARTICLE-LOOK-UP-TABLE-MAX-VOLTAGE*- this is the range for the parti
le voltage-dependent fun
tion arrays as well - 
he
k the value of *PARTICLE-LOOK-UP-TABLE-VOLTAGE-RANGE*[normally 400℄), with a resolution given by *PARTICLE-LOOK-UP-TABLE-PRECISION* [normally 0.1℄. For ex-ample, the fun
tion:sigmoid-array v�half slope vmin vmax vres [Fun
tion℄
ould be used, spe
i�ed with:(synapse-type-def`(nmda(parent-type . fast-ex)(stati
-voltage-dependen
e-fun
tion . (SIGMOID-ARRAY-50.0 0.5,*PARTICLE-LOOK-UP-TABLE-MIN-VOLTAGE*,*PARTICLE-LOOK-UP-TABLE-MAX-VOLTAGE*,*PARTICLE-LOOK-UP-TABLE-PRECISION*))))Note that if expli
it referen
es to global variables are used as fun
tion arguments, as here, they must byevaluated (here, by using the ba
kquote list syntax, and adding a 
omma prior to ea
h variable). Of 
ourse,if the values are known in advan
e (usually the 
ase), a simpler format would be:(synapse-type-def`(nmda(parent-type . fast-ex)(stati
-voltage-dependen
e-fun
tion . (SIGMOID-ARRAY -50.0 0.5 -200.0 200.0 0.1))))The fun
tion and arguments supplied as a STATIC-VOLTAGE-DEPENDENCE-FUNCTION entry are evaluated onlyon
e, when the 
hannel or synapse type is �rst 
reated. Alternatively, an expli
it numeri
 sequen
e may beused, again with the 
hara
teristi
s determined as above. In prin
iple, the CONDUCTANCE-FUNCTIONparameterdes
ribed above 
ould a

omplish the same task, but the use of an expli
it, pre-
al
ulated look up table ofvoltage may be mu
h more eÆ
ient than 
alling a fun
tion with every 
hannel or synapse evaluation.10.8 Mis
ellaneous
hannel-types-of-ion-type ion�type &optional (only�loaded t) (only�in�
ir
uit t)ex
lude�
on
�dependent�types [Fun
tion℄



10 MEMBRANE ELEMENTS 66synapse-types-of-ion-type ion�type &optional only�loaded only�in�
ir
uitex
lude�
on
�dependent�types [Fun
tion℄For both of these fun
tions, ION-TYPE is a symbol that is mat
hed to entries in the :ION-PERMEABILITIESslot of 
hannel or synapse types. This fun
tion sear
hs through all the entries of de�ned by CHANNEL-TYPE-DEFor SYNAPSE-TYPE-DEF as appropriate and returns a list of all the 
hannel types referen
ed there whose:ION-PERMEABILITIES in
ludes ION-TYPE. This fun
tion will 
reate instan
es of 
hannel or synapse typesthat satisfy this 
riteria if the types don't already exist. For example:* (CHANNEL-TYPES-OF-ION-TYPE 'na nil nil)(<Channel type NA-HH-EXT> <Channel type NA-HH> <Channel type NA3><Channel type NA2> <Channel type NA1> <Channel type NA-TRB><Channel type NA-FG> <Channel type NA-RHO> <Channel type NA-SGB><Channel type NA-WDY>)Note that the :ION-PERMEABILITIES spe
i�
ation is not required for 
hannel or synapse types, i.e. it maybe NIL.
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lesThis se
tion des
ribes the 
hannel and parti
le models. Mu
h of this text is taken from Borg-Graham 1999.11.1 Des
ription of Channel and Parti
le ModelsChannel 
ondu
tan
es are governed by the general equation:g
h() =Y vnxnY 
mym �g
hwhere vn are xn voltage dependent gating parti
les and 
m are ym 
on
entration dependent gating parti
lesasso
iated with ea
h 
hannel protein.Hodgkin and Huxley (1952b) des
ribed 
hannel gating as an intera
tion between di�erent, independenttwo-state (open and 
losed) elements or \parti
les", all of whi
h must be in the open state for 
hannel
ondu
tion. The state dynami
s of ea
h parti
le are des
ribed with �rst order kineti
s:xC �x(V );�x(V )*) xO (2)where xC and xO represent the 
losed and open states of gating parti
le x, respe
tively. �x(V ) and �x(V )are the forward and ba
kward rate 
onstants of the parti
le as a fun
tion of voltage, respe
tively. Taking xto be the probability of the open state, the asso
iated di�erential equation is:dxdt = x1(V )� x�x(V )with the steady state value of x, x1(V ), and the time 
onstant, �x(V ) given by �x(V ) and �x(V ) (seebelow). A useful generalization of this kineti
 s
heme is to assume that the rate 
onstants 
an be fun
tionsof other signals (e.g. [Ca2+℄); the general form of the gating term in this s
heme is the produ
t of the openprobability of the 
hannel's gating parti
les:h(V; t; :::) = �xnii (V; t; :::)where xi is the open probability of a given type of gating parti
le, and ni is the number of parti
les of agiven type asso
iated with the 
hannel. This system is a spe
i�
 type of Markovian model (see Se
tion 12),
onstrained by the independen
e 
ondition; the general Markovianmodel allows arbitrary transitions betweenthe states des
ribing the 
hannel kineti
s.Two-state voltage dependent gating parti
les in Surf-Hippo follow the Hodgkin-Huxley model of �rst-order kineti
s, where the rate 
onstants (and thus the time 
onstant and steady-state value) are voltagedependent. The equations for the rate 
onstants (or alternatively, the tau and steady-state values) may besupplied expli
itly (parti
le type 
lass :HH and others). Otherwise, they may be derived from a single-barrier,extended Hodgkin-Huxley model (parti
le type 
lasses :HH-EXT or :HH-EXT-OLD), modi�ed somewhatfrom the model des
ribed in Borg-Graham 1991. In the latter 
ase, the parameters of the parti
le rateequations are Z (e�e
tive valen
e of the gating parti
le), GAMMA (symmetry), BASE-RATE (referen
e rate
onstant, 
alled alpha-0 in the above referen
e, in 1/ms), V-HALF (midpoint for voltage dependen
e, inmV) and TAU-0 (minimum time 
onstant for parti
le transitions, in ms), and voltage independent additiveforward and ba
kward rate 
onstants (ALPHA 0 and BETA 0, in 1/ms). The pre
ise appli
ation of TAU-0depends on whether the parti
le type 
lass is :HH-EXT-OLD (the version des
ribed in Borg-Graham '91) or:HH-EXT:For :HH-EXT parti
le types:1Tau(V) = ------------ + TAU-0alpha + betaFor :HH-EXT-OLD parti
le types:



11 CHANNELS AND GATING PARTICLES 681Tau(V) = Maximum [ ------------ , TAU-0 ℄alpha + betaIn both 
ases alpha and beta are both fun
tions of z, gamma, base-rate, v-half, alpha 0 and beta 0 (re-spe
tively) and a temperature term (see below). The newer version of :HH-EXT model 
orre
tly follows theoriginal hypotheti
al basis for the TAU-0 parameter, namely that there is a voltage-independent rate-limitingstep for the gating parti
le transitions.For parti
le types in whi
h either there is no data on the voltage dependen
e, or there is no observedvoltage dependen
e, :IGNORE-TAU-VOLTAGE-DEPENDENCE is T, and the :TAU-0 value is the 
onstant time
onstant for this parti
le type (see below).Thus, the de�nition of a new 
hannel 
onsists of providing parameters for the 
hannel type, and theparameters for the parti
le types that the 
hannel type must refer to. Channel type, voltage-dependentparti
le type, and 
on
entration-dependent parti
le type parameters are stored in a list formats, whi
hare in turn passed to the ma
ros CHANNEL-TYPE-DEF, PARTICLE-TYPE-DEF, or CONC-PARTICLE-TYPE-DEF asappropriate.Reversal potential 
al
ulation is dis
ussed in Se
tion 10.Channel type parameter lists must have a value for either GBAR-DENSITY or GBAR.For example, a 
al
ium-dependent potassium 
hannel of the type des
ribed in Borg-Graham (1991) maybe de�ned as follows:(
hannel-type-def'(
(gbar-density . 40.0)(e-rev . -85.0)(ion-permeabilities . ((K 1.0)))(QTEN . 1.5)(referen
e-temp . 30.0)(v-parti
les . ((
x 3)(
y 1)))(
on
-parti
les . ((
w 1)))))This expression supplies parameters for a 'C 
hannel, with the following 
hara
teristi
s:Condu
tan
e density = 40 pS per square mi
ron or 40.0e-4 S/
m2Reversal potential = -85 mVPermeable to K^+ ions onlyQ_{10} = 1.5, referen
ed to 30 degrees C2 types of voltage dependent parti
les - 3 of the CX type,and 1 of the CY type1 type of 
on
entration dependent parti
le - 1 of the CW typeFor the Hodgkin-Huxley DR 
hannel in the squid:(
hannel-type-def'(dr-hh(gbar-density . 360.0)(e-rev . -77.0)(ion-permeabilities . ((K 1.0)))(v-parti
les . ((n-hh 4)))))This implies:Condu
tan
e density = 360 pS per square mi
ronReversal potential = -77 mVPermeable to K^+ ions only1 types of voltage dependent parti
le - 4 of the N-HH type,
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le type parameters referen
ed by the C 
hannel type above are de�ned with the following expres-sions:(parti
le-type-def'(
x(
lass . :hh-ext)(VALENCE . 25)(GAMMA . 0.2)(BASE-RATE . 0.007)(V-HALF . -65.0)(TAU-0 . 0.25)(QTEN . 3)(referen
e-temp . 30.0)))(parti
le-type-def'(
y(
lass . :hh-ext)(VALENCE . -20)(GAMMA . 0.8)(BASE-RATE . 0.01)(V-HALF . -60.0)(TAU-0 . 15.0)(QTEN . 3)(referen
e-temp . 30.0)))(
on
-parti
le-type-def'(
w(
lass . :nth-order)(alpha . 200.0)(beta . 0.125)(power . 3)(QTEN . 3)(
on
-int-type . 
a-in)(referen
e-temp . 30.0)(Fixed-boltzmann-referen
e-temperature . 30.0)(shell . 1)))For the single N parti
le (here 
alled N-HH) in the Hodgkin-Huxley DR 
hannel:(parti
le-type-def`(n-hh(
lass . :hh)(alpha-fun
tion . ,#'(lambda (voltage)(let ((v-55 (- voltage -55.0)))(/ (* -0.01 v-55)(1- (exp (/ v-55 -10.0)))))))(beta-fun
tion . ,#'(lambda (voltage)(* 0.125 (exp (/ (- voltage -65.0) -80.0)))))))Thus, des
riptions for parti
les of the :HH type require a LAMBDA form or fun
tion name for either bothALPHA-FUNCTION and BETA-FUNCTION, or both TAU-FUNCTION and SS-FUNCTION entries, in the form above.For these parti
le type fun
tions, either the LAMBDA forms or the fun
tions referen
ed by name must pro
essa single required argument, membrane voltage (in mV). See also Se
tion A.11.Note that the use of ALPHA-FUNCTION here refers to the voltage dependen
e of the forward rate 
onstantfor gating parti
le transitions, and should not be 
onfused with the alpha fun
tion form often used asempiri
al des
riptions of synapti
 
ondu
tan
e waveforms, et
. Also, the use of the symbol ALPHA-FUNCTION
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ontext of gating parti
les does not interfere with the Lisp fun
tion ALPHA-FUNCTION - the usages areindependent.The �nal voltage dependent steady-state 
urves for the parti
les are re
ti�ed to avoid a negative valuesfrom the tails of the de�ning steady-state or rate 
ontant fun
tions.11.2 Voltage Independent Components and Fixed Time Constants for :HH-EXT Parti
le TypesNote that there are expli
it voltage independent 
omponents of the :HH-EXT formulation: ALPHA 0, BETA 0assume that there is a parallel voltage-independent transition between the two states, while TAU-0 assumesthat there is a voltage-independent rate-limiting 
omponent to the voltage dependent rates.If either the BASE-RATE entry PARTICLE-TYPE-DEF is missing for a :HH-EXT parti
le, or(IGNORE-Tau-VOLTAGE-DEPENDENCE . T) is in
luded, then the :IGNORE-TAU-VOLTAGE-DEPENDENCE of thetype is set T.In these 
ases, the time 
onstant for the parti
le type is determined by the value of TAU-0.11.3 Summary of Extended HH Model ConventionsIn Surf-Hippo, the 
onventions for the parameters of the HH extended model are as follows:� ALPHA(V) The forward rate 
onstant of a parti
le as a fun
tion of voltage, that is the transition of aparti
le from the 
losed to the open state.� BETA(V) The ba
kward rate 
onstant of a parti
le as a fun
tion of voltage, that is the transition of aparti
le from the open to the 
losed state.� Z Valen
e of the gating parti
le, where a positive value means that the parti
le tends to the openposition with depolarization - i.e. it is an a
tivation parti
le. Likewise, a negative value of the valen
emeans that the parti
le tends to the open position with hyperpolarization - i.e. it is an ina
tivationparti
le.Note that this de�nition of the sign 
onvention is opposite to that found in Borg-Graham (1991), for noprofound reason. However, the 
onvention used here is the same as that used in Ja
k, Noble, and Tsien(1983 , eq. 8.33-34, p. 242), and depends only on the (arbitrary) polarity of the gating parti
le with respe
tto the membrane inner and outer surfa
e.� GAMMA Asymmetry of the gating parti
le voltage sensor within the membrane - the value of GAMMA isa 
oeÆ
ient of the (shifted) voltage in the argument of the exponental term for ALPHA(V), whereas(1 - GAMMA) is a 
oeÆ
ient of the (shifted) voltage in the argument of the exponental term for BETA(V).� BASE-RATEThe leading 
oeÆ
ient for the voltage dependent 
omponents of both ALPHA(V) and BETA(V)� ALPHA_0 Voltage independent additive forward rate 
onstant.� BETA_0 Voltage independent additive ba
kward rate 
onstant�0x(V ) = K exp�z 
 (V � V1=2) FR T ��0x(V ) = K exp��z (1� 
) (V � V1=2) FR T �An additional parameter, �0, (not the same as the linear membrane time 
onstant) represents a rate-limitingstep in the state transition, for example \drag" on the parti
le 
onformation 
hange.1 This parameter is1The formulation in Borg-Graham (1991) used this parameter as a lower bound for �x(V ). The form de�ned above not onlyavoids dis
ontinuities in the 
hara
teristi
 but also seems more plausible. Similar 
onsiderations have been explored for other,more general, kineti
 s
hemes, e.g. Patlak, 1991.
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ru
ial for �tting the expressions to the original Hodgkin-Huxley equations. There are two equivalent waysof in
orporating �0 into the kineti
s. The more intuitive approa
h is to in
lude �0 expli
itly in the expressionfor the time 
onstant �x(V ) of the parti
le state di�erential equation:�x(V ) = 1�0x(V ) + �0x(V ) + �0We 
an also derive the appropriate forms for �x(V ) and �x(V ) that 
hara
terize the kineti
s of Equation 2:�x(V ) = �0x(V )�0(�0x(V ) + �0x(V )) + 1�x(V ) = �0x(V )�0(�0x(V ) + �0x(V )) + 1Note that when �0 is 0, �x(V ) is equal to �0x(V ) and �x(V ) is equal to �0x(V ). Finally, the expression forx1(V ) is: x1(V ) = �0x(V )�0x(V ) + �0x(V ) = �x(V )�x(V ) + �x(V ) (3)Two additional parameters, �0 and �0, may be 
onsidered in some 
ases, though they are not ne
essaryin reprodu
ing the original Hodgkin-Huxley equations. These parameters are forward and ba
kward rate
onstants, respe
tively, of parallel state transitions whi
h are voltage-independent, but nonetheless �gureinto the total kineti
s. If 
onsidered, �0 and �0 alter the expressions for �x(V ), �x(V ), and thus �x(V ) andx1(V ), whi
h we will not 
onsider here.11.4 Creating Channels and Channel TypesThe basi
 fun
tion to 
reate a 
hannel is:
reate-
hannel element type &key pre�synapti
�element 
on
�int�delta [Fun
tion℄The TYPE argument referen
es a type des
ription that was de�ned with a CHANNEL-TYPE-DEF entry, asdes
ribed above, and the 
hannel will be added to the 
ell element asso
iated with ELEMENT. Notethat if the keyword arguments PRE-SYNAPTIC-ELEMENT or CONC-INT-DELTA are not required, thenCREATE-ELEMENT may be used just as well to 
reate the 
hannel.The keyword argument CONC-INT-DELTA is for adding a 
oeÆ
ient (less than or equal to 1) that willadjust the 
hannel 
urrent integrated by an asso
iated 
on
entration integrator. The delta term is used whena 
hannel whi
h is in real life distributed over several (say, N) elements is assigned in the 
ir
uit model toa fewer (< N) number of elements, possibly only one. In this 
ase delta, whi
h is less than or equal to one,
ompensates for the overestimate of the integrated 
urrent in the higher density 
hannel distribution. Forexample, if the total membrane area of the elements for whi
h a given 
hannel is postulated to be assignedto is area-true, and the area of the element(s) that the 
hannel is a
tually assigned to is some smaller valuearea-a
tual, thendelta = area-a
tual/area-trueOther heuristi
s for adjusting this parameter are possible. The default value for delta is 1.0 (see alsoSe
tion 15.9).When supplied, PRE-SYNAPTIC-ELEMENT spe
i�es the 
ell element whi
h 
ontrols the 
hannel, oth-erwise taken as the 
ell element asso
iated with ELEMENT (see Se
tion 13.1).11.5 Channel Maximum Condu
tan
eSee Se
tion 10.
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lesThe Q10 parameter (denoted by the symbol Q10 in CHANNEL-TYPE-DEF,PARTICLE-TYPE-DEFand CONC-PARTICLE-TYPE-DEF)refers to the temperature dependen
e of the 
hannel base 
ondu
tan
e or permeability (gbar), and the tem-perature dependen
e of the parti
le kineti
s. The REFERENCE-TEMP entries are the referen
e temperaturesfor the various Q10 fa
tors.(defvar *ignore-q10* nil)When this 
ag is true then the only temperature dependen
e in the (:HH-EXT 
lass) parti
le kineti
s (rate
onstant 
al
ulation) o

urs via the 1/T fa
tor in the exponential argument of the Boltzmann term (see alsoSe
tion 14). Thus, for gating parti
les that use the extended HH model, there is an "intrinsi
" temperaturedependen
e in the Boltzmann term of the rate 
onstants, whi
h as a default refers to the 
urrent simulationtemperature. The 
omplete temperature dependen
e of a parti
le of this 
lass arises from both this termand the expli
it Q10 
oeÆ
ient. The Boltzmann term may be nulli�ed, however, by in
luding the followingin the parti
le type's parameter list used in the PARTICLE-TYPE-DEF:(Fixed-boltzmann-referen
e-temperature . 30.0) degrees 
el
iusIn this 
ase, the temperature term in the Boltzmann term is taken from this value (whi
h may be 
hangedwith the menus, or by 
alling:(element-parameter PARTICLE-TYPE 'fixed-boltzmann-referen
e-temperature VALUE)(element-parameter PARTICLE-TYPE 'use-fixed-boltzmann-referen
e-temperature t)on parti
le type PARTICLE-TYPE, using a single-
oat VALUE (in degress 
el
ius). The se
ond 
all sets a
ag whi
h enables the use of this referen
e temperature.11.7 Modifying Channel and Parti
le ParametersA series of menus are available for editing the properties of 
hannel types and their asso
iated parti
le types.These menus also in
lude plots of parti
le rate equations as fun
tions of voltage, and steady-state IV 
urvesfor the 
ell.When trying to �t parameters of 
hannels/parti
les, it is 
onvenient to save updated parameters usingthe:"Dump loadable 
ir
uit element definitions:"option from the save data menu. This 
reates a �le for 
ir
uit element types that 
an be reloaded ba
k intoLisp. This is espe
ially handy for simulation sessions in whi
h element type parameters have been 
hanged,sin
e it allows for almost automati
 restoral of 
ir
uit state in a new session.11.8 Integration of Parti
le StatesAll the voltage-dependent time 
onstant and steady-state fun
tions for the parti
les are pre
omputed andstored in arrays for fast referen
e during the integration. These arrays are automati
ally re-evaluated when-ever parti
le parameters are 
hanged. For details on the numeri
al method used for integrating parti
lestates, see Se
tion 31.11.9 Spe
ifying Expli
it Initial Conditions for Parti
lesNormally, the initial 
ondition for a gating parti
le is determined by the initial voltage, 
on
entrations, et
.that determine the dynami
s of the parti
le. On the other hand, an expli
it value for the initial state maybe de�ned by in
luding a number, between 0 and 1 (naturally), in the parti
le type or parti
le parameters,e.g.: (element-parameter SOME-PARTICLE-TYPE 'initial-state 0.1)If a parti
le has a parameter value de�ned for 'initial-state, this number will super
ede that de�ned, ifany, for the parti
le type.
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ision Of Voltage Dependent Kineti
s Lookup TablesThe pre
ision of the table lookup for voltage-dependent rate 
onstants (or equivalently, time 
onstant andsteady-state values) is determined by the 
onstant *PARTICLE-LOOK-UP-TABLE-PRECISION*, whi
h is set to0.1mV. If ne
essary, interpolation is applied depending on the value of*interpolate-parti
le-arrays* nil [Variable℄whi
h if true, results in an interpolation between lookup table entries during the parti
le evaluations.11.11 Summary of CHANNEL-TYPE-DEF FormatSee also Se
tion 9.Gbar Parameters:(gbar-density . 130.0) <- ps/um2 (pS/um2 = 1.0e-12 S / 1.0e-8 
m2 = 1.0e-4 S/
m2)or(gbar . 3.0) <- mi
rosiemensIon Permeabilities and Reversal Potential:(e-rev . 50.0) <- mV(ion-permeabilities . ((NA 1.0))) <- ((ion-1 relative-perm) (ion-2 relative-perm) ...)(use-variable-e-rev . t)or(use-defined-e-rev . t)Condu
tan
e Intrinsi
 Temperature Dependen
e:(QTEN . 1.5)(referen
e-temp . 24.0) <- degrees CCon
entration Integrator Parameters:(
on
-int-type-params . ((
a-in1-wdy (1 .7))(
a-in2-wdy (1 0.024))))(
on
-int-type-e-rev-params . ((
a-in1-wdy (1 1))))Gating Parti
les:(v-parti
les . ((m1 2) (H1 1)))(
on
-parti
les . ((ahpw 1)))11.12 Summary of PARTICLE-TYPE-DEF Format� :HH Class(parti
le-type-def`(m-hh(
lass . :hh)(alpha-fun
tion . ,#'(lambda (voltage)(let ((v-40 (- voltage -40.0)))(/ (* -0.1 v-40)(1- (exp (/ v-40 -10.0)))))))(beta-fun
tion . ,#'(lambda (voltage)(* 4.0 (exp (/ (- voltage -65.0) -18.0)))))))These fun
tions may be optimized, if desired, as follows:



11 CHANNELS AND GATING PARTICLES 74(lambda (voltage)(de
lare (optimize (speed 3) (spa
e 0))(single-float voltage))(* 4.0 (exp (/ (- voltage -65.0) -18.0))))Instead of expli
it fun
tions for alpha and beta, there may be instead expli
it fun
tions for:(parti
le-type-def`(foom-bar(
lass . :hh)(tau-fun
tion . 'foom-bar-tau)(ss-fun
tion . 'foom-bar-ss)))When :HH 
lass parti
le type kineti
s are derived from expli
it fun
tions of alpha and beta, then thevoltage depdendent time 
onstant may have a s
aling fa
tor tau-
oeÆ
ient:(tau-
oeffi
ient . 0.8)� :HH-EXT Class(parti
le-type-def'(m-hh-fit(
lass . :hh-ext)(VALENCE . 2.7)(GAMMA . 0.4)(BASE-RATE . 1.2)(V-HALF . -40.0)(TAU-0 . 0.07)))(parti
le-type-def`(KDX-GEN(
lass . :HH-EXT)(valen
e . 3.0)(gamma . 0.0)(base-rate . 1.0)(v-half . -63.0)(tau-0 . 1.0)(IGNORE-TAU-VOLTAGE-DEPENDENCE . T)(referen
e-temp . 35.0)(FIXED-BOLTZMANN-REFERENCE-TEMPERATURE . 27.0)(qten . 1.0)))11.12.1 Changing expli
it tau and ss spe
i�
ationsTwo fun
tions allow 
hanging the spe
i�
ation for the time 
onstant and steady-state of two state gatingparti
les, in general as a fun
tion of voltage:set-parti
le-type-tau type tau�form [Fun
tion℄set-parti
le-type-ss type ss�form [Fun
tion℄Ea
h 
an a

ept either a number, representing a �xed time 
onstant in millise
onds, or �xed steady-statevalue between 0 and 1, respe
tively, or a fun
tion name or lambda form, with single voltage argumentsin millivolts, and that return either a tau value in millise
onds or a steady-state value between 0 and 1,respe
tively.



11 CHANNELS AND GATING PARTICLES 7511.13 Summary of CONC-PARTICLE-TYPE-DEF Format� :NTH-ORDER Class -(
on
-parti
le-type-def'(KAHPO-GEN(
lass . :NTH-ORDER)(alpha . 2.0e+14)(beta . 0.01)(tau-0 . 100.0d0)(power . 4)(qten . 1.0)(referen
e-temp . 30.0)(shell . 2)(
on
-int-type . CA-IN-GEN)))11.14 Related Fun
tions and FilesSee also Se
tion 15.
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lesParti
le kineti
s may be de�ned in terms of a Markov model, as des
ribed in Destexhe et al.(1994). Thede�nition for a Markov state parti
le type is a bit more 
ompli
ated than that for :HH or :HH-EXT parti
letypes. The des
ription follows the following format.12.1 De�ning Global Variables Used in the Markov Parti
le Type De�nitionFor this example, various 
omponents of the parti
le type de�nition will be assigned to global variables (e.g.*4STATE-DEMO-STATES*, et
.). On the other hand, note that all 
omponents 
an be in
orporated dire
tly inthe PARTICLE-TYPE-DEF form, des
ribed later.First, de�ne two lists whi
h hold all the state names and the open state names, respe
tively:'(C1 C2 O I)'(O)State transition rates 
an be either dependent on the voltage 
ontrolling the parti
le, in whi
h 
ase the ratesare pre
omputed and stored in look up arrays, and/or the rates 
an be arbitrary fun
tions of the parti
lesduring the simulation. In the latter 
ase, the fun
tions are referen
ed by the parti
le type and 
alled whenthe parti
le is evaluated.To setup the transition rates, de�ne one or two variables whi
h referen
e the states and assigns transitionfun
tions dependent on voltage or on the parti
le in general to the available transitions.This is a list of lists, one for ea
h spe
i�
 state transition:'((from to rate-def parti
le-arg-p) ...)FROM and TO referen
e spe
i�
 states of the parti
le. They 
an be either symbols 
orresponding to thesymbols used in the states list, or indi
es referring to the original ordering of the states list.RATE-DEFmay be either a fun
tion name (for fun
tions that will be 
alled during the parti
le evaluations),a fun
tion expression, or a number (1=ms, for voltage-independent transitions).If a voltage-dependent fun
tion is to be used, then the fun
tion expression should be a form referen
inga fun
tion that has a single required argument (
orresponding to voltage in mV). As des
ribed below, usinga fun
tion expression is advantageous if you want to easily edit fun
tion parameters and store the 
hangesin an .elts �le.If a fun
tion name is used, this fun
tion is 
alled during the parti
le evalation with the parti
le as thesingle argument. The result of the fun
tion is passed on by using the ma
ro RETURN-MARKOV-RATE:return-markov-rate val [Ma
ro℄Thus, the fun
tion must be written with the RETURN-MARKOV-RATEma
ro, whose argument is an expressionthat returns a double-
oat rate value. For example:(defun k
o-markov-
a-a
tivation-ba
kward (prt)(return-markov-rate(let ((type (
on
-parti
le-type (parti
le-
on
-parti
le prt))))(d-flt ; So that a double float value is returned.(* (
on
-parti
le-type-beta type)(
on
-parti
le-type-q10-rate-fa
tor type))))))The PARTICLE-ARG-P entry 
ags whether or not the expression is dependent on voltage alone (PARTICLE-ARG-P=NIL,or is absent), in whi
h 
ase a look up array is pre
omputed, or whether the expression is a fun
tion with theparti
le as its argument (PARTICLE-ARG-P = T). The various optimization 
ags are not required, but 
anmake a very large di�eren
e in eÆ
ien
y.In all 
ases, the 
al
ulated rate should be in units of 1=ms.



12 MARKOV PARTICLES 7712.2 Editing Markov Transition Fun
tion ParametersFun
tions that de�ne voltage-dependent transition rates may also have keyword arguments, with valuesspe
i�ed in the expression. These expressions may be edited (in parti
ular the values supplied to thekeywords) from the menus later, while editing parameters of the parti
le type. Thus, it is advantageousto use fun
tions with keyword parameters if you want to (easily) dynami
ally modify the transition ratesduring a Surf-Hippo session.Note that the a fun
tion expression should have a dummy required argument - in the example belowwe use "VOLTAGE" just to emphasize that the expression will be evaluated with voltage arguments. Thefun
tion in a fun
tion expression also must take a single-
oat voltage argument (mV), and return a value inunits of 1=ms.Following from the example above, a 
omplete list of the transitions would be:'((C2 O (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -51.0 :K 1.0 :TAU-MIN 0.3333))(O C2 (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -57.0 :K -2.0 :TAU-MIN 0.3333))(O I 3)(O C1 (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -51.0 :K -2.0 :TAU-MIN 0.3333))(C1 O (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -42.0 :K 1.0 :TAU-MIN 0.3333))(I C1 (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -53.0 :K -1.0 :TAU-MAX 100.0 :TAU-MIN 1.0))(C1 C2 (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -60.0 :K -1.0 :TAU-MAX 100.0 :TAU-MIN 1.0)))In this example of a parti
le with four states, seven of the possible twelve state transitions are allowed. six ofthese transitions are de�ned in terms of a voltage dependent fun
tion, with keyword parameters adjusted forea
h spe
i�
 transition (see do
umentation for the SQUEEZED-EXPONENTIAL fun
tion). The seventh transition(state O to state I) is voltage independent and set to a 
onstant value of 3.0ms�1.12.3 The Format of the PARTICLE-TYPE-DEF FormFinally, the PARTICLE-TYPE-DEF form for a Markov state parti
le type referen
es the lists des
ribe above:(parti
le-type-def`(NA-X-HPC(
lass . :MARKOV)(STATES . (C1 C2 O I))(OPEN-STATES . (O))(STATE-TRANSITIONS .((C2 O (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -51.0 :K 1.0 :TAU-MIN 0.3333))(O C2 (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -57.0 :K -2.0 :TAU-MIN 0.3333))(O I 3)(O C1 (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -51.0 :K -2.0 :TAU-MIN 0.3333))(C1 O (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -42.0 :K 1.0 :TAU-MIN 0.3333))(I C1 (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -53.0 :K -1.0 :TAU-MAX 100.0 :TAU-MIN 1.0))(C1 C2 (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -60.0 :K -1.0 :TAU-MAX 100.0 :TAU-MIN 1.0))))(referen
e-temp . 27.0)(qten . 1.0)))Note that we 
ould have used the ba
kquote syntax in order to represent the various lists as global variables;in some 
ases the resulting 
ode will be 
learer. The expli
it format shown here is used, for example, if aPARTICLE-TYPE-DEF form is saved to �le by the program, as below.12.4 Saving Markov Parti
le Type ParametersAs des
ribed in Se
tion 9, loadable Type-Def forms with the 
urrently loaded element type parameters maybe written to �le using the DUMP-ELEMENTS-FILE fun
tion. For Markov parti
le types, this form will onlybe loadable if the state transistion rates are de�ned in terms of fun
tion expressions, as des
ribed above.In this 
ase, the saved Type-Def form will in
lude the original fun
tion expressions, along with the 
urrent



12 MARKOV PARTICLES 78values for the keyword parameters, if they exist. On the other hand, if a state transitsion rate is de�ned interms of a lambda expression, then the stored fun
tion will refer only to a lexi
al (lo
al) de�nition, whi
h isonly valid during the Lisp session in whi
h it was 
reated.12.5 Spe
ifying Expli
it Initial Conditions for Markov Parti
lesNormally, the initial 
onditions for a Markov parti
le are determined by the initial voltage, 
on
entrations,et
. that determine the dynami
s of the parti
le. On the other hand, as with HH-type parti
les, an expli
itvalue for the initial state may be de�ned by in
luding a list of numbers, summing to 1 (naturally), in theparti
le type or parti
le parameters, e.g.:(element-parameter SOME-PARTICLE-TYPE 'initial-state '(0.1 0.2 0 0 0.7))If a parti
le has a parameter value de�ned for 'INITIAL-STATE, this list will super
ede that de�ned, if any,for the parti
le type. The values in the list are assigned the the states 
oresponding to the de�nition in theparti
le type's parameters, e.g.:* (element-parameter SOME-PARTICLE-TYPE 'states)(C1 C2 O I1 I2)12.6 Linear Markov models based on the Hodgkin-Huxley modelThe standard interpretation of the Hodgkin-Huxley gating model is that all parti
les asso
iated with a
hannel must be in the open state for 
hannel 
ondu
tion. A generalization of this theme is to assume thatfor a 
hannel with N Hodgkin-Huxley gating parti
les of the same type, the 
hannel 
ondu
ts when any M(� N) of the parti
les are in the open state (e.g. the model of retinal IH of Barnes and Hille, 1989). We 
allthis a linear Markov model sin
e the Markov state diagram has no loops. Sin
e all the parti
les are the sametype, the 
omputation of the 
hannel gating is mu
h more eÆ
ient than that for the general Markov 
ase.Spe
i�
ally, given N parti
les of type x, ea
h with the same open probability p (sin
e they are assumed tobe identi
al and independent), then the 
ontribution hx(V; t; :::) of the ensemble of parti
les to the 
hannelgating term h(V; t; :::) is given by a summation of binomial terms:hx(V; t; :::) = NXi=M � Ni � pi(1� p)(N�i)A linear Markov parti
le type is de�ned as a two-state parti
le (e.g. :HH, :HH-EXT) or 
on
entrationparti
le type, with an additional entry in the PARTICLE-TYPE-DEF or CONC-PARTICLE-TYPE-DEF form, forexample (in sr
/parameters/barnes-hille-
one-
hannels.lisp):(parti
le-type-def`(h-x-barnes-hille-89(
lass . :HH-EXT)(linear-markov . (4 2)) ; N = 4, M = 2...)12.7 Sub-Parti
lesA Markov parti
le state transition 
an be 
on
entration dependent by spe
ifying a 
on
entration \sub"parti
le. This is done, for example, for the Ca2+-dependent gating of the KCT 
hannel in the Workingmodel:(parti
le-type-def`(KCTX-HPC(
lass . :MARKOV)(STATES . (C O I))



12 MARKOV PARTICLES 79(OPEN-STATES . (O))(STATE-TRANSITIONS .((C O KCTX-HPC-CA-ACTIVATION-FORWARD T)(O C KCTX-HPC-CA-ACTIVATION-BACKWARD T)(I C (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -120.0 :K -10.0 :TAU-MIN 10.0))(O I (SQUEEZED-EXPONENTIAL VOLTAGE :V-HALF -64.0 :K -3.5 :TAU-MIN 0.1))))(referen
e-temp . 27.0)(qten . 1.0)(
on
entration-parti
le-type . KCTX-HPC-CA)))By spe
ifying a CONCENTRATION-PARTICLE-TYPE entry in the PARTICLE-TYPE-DEF, whenever a Markov parti-
le of this type is 
reated, an additional 
on
-dependent parti
le is also 
reated. Importantly, the sub-parti
leis not evaluated as if it were a normal distin
t gating parti
le, but rather the spe
i�ed rate fun
tions for theparent Markov parti
le may a

ess the sub-parti
le as needed, for example:(defun KCTX-HPC-
a-a
tivation-ba
kward (prt)(return-markov-rate (nthorder-
on
-parti
le-ba
kward-rate (parti
le-
on
-parti
le prt))))As explained above, the PRT argument in the state transition rate fun
tion KCTX-HPC-CA-ACTIVATION-BACKWARDis the Markov parti
le, and the sub-parti
le whi
h imparts 
on
entration dependen
e is referen
ed via thatparti
le's :CONC-PARTICLE slot, thus PARTICLE-CONC-PARTICLE. Sin
e the sub parti
le is not evaluatedper se, normally there is no data asso
iated with it (see Se
tion 18.6).



13 SYNAPSES 8013 SynapsesThis se
tion des
ribes the synapse model.13.1 Controlling Synapse A
tivation - Classes of Synapse TypesThe fundamental di�eren
e between di�erent 
lasses of synapse types is how 
lass is 
ontrolled. The options,spe
i�ed by the synapse type slot :CONTROL, are as follows:� :LIGHT - The 
ondu
tan
e waveform for ea
h synapse is pre
al
ulated before the simulation: thesynapse spatial re
eptive �eld is integrated over the simulation time with a (2D) spatio-temporalpattern of "light" proje
ted onto a spe
i�ed anatomi
al plane, the result of whi
h is 
onvolved withthe synapse type's impulse response and then passed through a non-linearity expli
itly asso
iated withthe impulse response. If spe
i�ed, there 
an be an additional (linear) 
onvolution step.� :CHANNEL - The synapti
 
ondu
tan
e, 
al
ulated during the simulation, is modelled as a voltage and/or
on
entration dependent 
hannel, where the referen
e node for the voltage/
on
entrations 
ontrollingthe 
hannel is spe
i�ed by the :PRE-SYNAPTIC-NODE slot of the synapse.� :VOLTAGE - The synapti
 
ondu
tan
e, 
al
ulated during the simulation, is derived from summingdelayed 
opies of a referen
e 
ondu
tan
e waveform (de�ned for the synapse type). Additional 
opiesare in
luded in the summation (triggered) when the voltage at the :PRE-SYNAPTIC-NODE slot of thesynapse satis�es the 
onditions spe
i�ed for the synapse type. The pre-synapti
 node may refer to anysegment, soma, or axon.� :EVENT - The synapti
 
ondu
tan
e, 
al
ulated during the simulation, is derived from summing delayed
opies of a referen
e 
ondu
tan
e waveform (de�ned for the synapse type). Additional 
opies arein
luded in the summation (triggered) at time points stored in the :EVENT-TIMES slot of the synapse.� :TONIC - The synapti
 
ondu
tan
e is 
onstant for the entire simulation.The 
ontrol method for a given synapti
 type is in
luded in the list that de�nes the type parameters,e.g.: (
ontrol . :voltage)There is a :EVENT-TIMES slot that is asso
iated with ea
h synapse. For event synapses and voltage, thesynapse type waveform is applied with a :DELAY added to the :EVENT-TIMES. For light dependent synapses,the pre
alulated 
ondu
tan
e waveform is time shifted by :DELAY.13.2 Evaluation of Di�erent Types of Synapse ControlThe sequen
e of events for the evaluation of ea
h type of synapse 
ontrol are as follows.13.2.1 Evaluation of Light-Controlled SynapsesThe 
ondu
tan
e waveform, ex
ept for possible stati
 
ondu
tan
e non-linearity, is 
omputed before simula-tion:1. Integrate spatial re
eptive �eld of synapse with the pattern of light over the duration of the simulation.2. Convolve result of spatial integration with linear impulse response of synapse type.3. Pass result of 
onvolution through non-linearity asso
iated with impulse response (default is a thresholdat 0, i.e. half-wave re
ti�
ation).4. If spe
i�ed, 
onvolve waveform again with a 2nd linear impulse response asso
iated with synapse type.5. Store resulting waveform for use during simulation.



13 SYNAPSES 81If the global variable *REUSE-SYNAPSE-WAVEFORMS* is T and the simulation duration is un
hanged andthere was a prior simulation that 
omputed the light inputs, then the results of the last simulation's 
onvo-lution(s) are reused.During the simulation, this waveform is used (shifted by the delay for ea
h synapse) for the 
ondu
tan
ereferen
e at ea
h time step, after passing through (additional) stati
 non-linearity (if de�nded for this synapsetype). The result is then multiplied by the :GBAR of the synapse, and this is used as 
urrent value of synapti

ondu
tan
e.13.2.2 Evaluation of Channel-Controlled SynapsesDuring the simulation, the asso
iated 
hannel 
ondu
tan
e is evaluated like a regular 
hannel, with the
ontrolling voltage and/or 
on
entrations taken from the pre-synapti
 element. The result is passed througha stati
 non-linearity, if it exists for this synapse type, and then multiplied by the :GBAR of the synapse.This value is used as 
urrent value of synapti
 
ondu
tan
e.13.2.3 Evaluation of Voltage-Controlled SynapsesAt ea
h time step in the simulation:1. Look at pre-synapti
 element voltage (segment, soma, or axon).2. Trigger 
onditions satis�ed?3. If so, add new trigger time (plus delay for ea
h synapse) to list of trigger times.4. Loop over all trigger times, summing appropriately shifted values of referen
e 
ondu
tan
e waveform.5. Pass result of summation through stati
 non-linearity, if it exists for this synapse type.6. Result is multiplied by the :GBAR of the synapse and this is used as 
urrent value of synapti
 
ondu
-tan
e.13.2.4 Evaluation of Event-Controlled SynapsesAt ea
h time step in the simulation:1. If time 
orresponds to one of the delay times for a given synapse, add new trigger time (plus delay forea
h synapse)to list of trigger times.2. Loop over all trigger times, summing appropriately shifted values of 
ondu
tan
e template.3. Pass result of summation through stati
 non-linearity, if it exists for this synapse type.4. Result is multiplied by the :GBAR of the synapse and this is used as 
urrent value of synapti
 
ondu
-tan
e.13.2.5 Evaluation of Toni
-Controlled SynapsesThe synapse 
ondu
tan
e is 
onstant, taken from the :GBAR of the synapse.13.3 Creating Synapses and Synapse TypesThe basi
 fun
tion to 
reate a synapse is:
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reate-synapse post�synapti
�element type &optional pre�synapti
�element(add�pre�synapti
�element�name�to�name t) name [Fun
tion℄Returns a synapse of TYPE, installed on the 
ell element asso
iated with POST-SYNAPTIC-ELEMENT.The TYPE argument referen
es a type des
ription de�ned with the ma
ro SYNAPSE-TYPE-DEF. Synapsetypes that are 
ontrolled by the voltage of another node must in
lude a PRE-SYNAPTIC-ELEMENTelementornameasso
iatedwithasoma; segment; oraxon. If the POST-SYNAPTIC-ELEMENT (
an be NIL)already has a synapse of the same type, and the PRE-SYNAPTIC-ELEMENT is either di�erent or not re-quired for TYPE, then an alternate name will be 
reated from the addition of a number at the end of thestandard synapse name. If the global variable *PROMPT-FOR-ALTERNATE-ELEMENT-NAMES* is T, then the useris prompted before the additional synapse is 
reated, otherwise, the synapse is 
reated. The standard synapsename is either an integer, if *USE-SIMPLE-NAMES* is T (generated by GET-SYNAPSE-SIMPLE-NAME; seealso Se
tion 3.6), or given by NAME, if non-NIL, or 
omposed from the TYPE and the post-synapti
 element,in
luding also the name of the PRE-SYNAPTIC-ELEMENT if there is one and if ADD-PRE-SYNAPTIC-ELEMENT-NAME-TO-NAME is T.13.4 Synapse Presynapti
 Cell ElementsSynapse types with :CONTROL :CHANNEL or :VOLTAGE require a presynapti
 element for their 
ontrol, whi
hin turn 
an be either an axon, soma, or segment, as stated above. Thus, these types of synapses may onlybe de�ned after their presynapti
 elements are de�ned. For example, this would mean that in a 
ir
uit withmultiple inter
onne
ted 
ells, the 
ells would have to be de�ned �rst (with the appropriate fun
tions thatgenerate 
ell segments and somas, e.g. CREATE-TREE, et
.), and the synapses added afterwards.Spe
i�
ally, the PRE-SYNAPTIC-ELEMENT optional argument to CREATE-SYNAPSE must be suppliedfor :CHANNEL or :VOLTAGE-
ontrolled synapse types - if you try to 
reate a synapse whose type 
ontrolledby :VOLTAGE or :CHANNEL, and a pre-synapti
 element is not spe
i�ed, or does not exist, then an error is
agged, e.g.:Warning:CREATE-SYNAPSE: Synapse Syn-Hippo-soma-FAST-EX must have 
omplete presynapti
 info** Restarting from Top Level **See the TWO-HIPPOS and THREE-HIPPOS examples in sr
/hippo
ampus/hippos.lisp.It may be 
onvenient to in
orporate the pre-synapti
 element 
reation within the 
all to CREATE-SYNAPSE.For example:(
reate-synapse "CA1-12-ap18" 'fast-ex (
reate-axon "CA1-203-soma" 'SIMPLE-FAST))In this example, a FAST-EX type synapse is added to a 
ell element whose name is "CA1-12-ap18" (assumethat this type of synapse requires a presynapti
 element). The embedded 
all to CREATE-AXON returns aSIMPLE-FAST type axon that originates in the 
ell element whose name is "CA1-203-soma".When a pre-synapti
 element is an axon, the CREATE-SYNAPSE fun
tion automati
ally assigns the 
reatedsynapse to the axon so that the axon may be drawn properly from origin to its post-synapti
 destination.Event synapses may have a pre-synapti
 element de�ned for them, whi
h may in turn be in
orporated intheir name. However, in these 
ases there is no fun
tional signi�
an
e for the pre-synapti
 element.For a

essing the pre- or post-synapti
 elements of a 
reated synapse, you would use PRE-SYNAPTIC-ELEMENTor ELEMENT-CELL-ELEMENT. For a

essing the synapses who are driven by a given 
ell element use DRIVEN-SYNAPSES;for a

essing the asso
iated post-synapti
 
ell elements use SYNAPTIC-TARGETS. For a

essing the synapseswho impinge on a given 
ell element use IMPINGING-SYNAPSES.13.5 Synapse Maximum Condu
tan
eSee Se
tion 10.
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 Voltage Dependen
e of Synapti
 Condu
tan
esThe 
ondu
tan
e of a synapse 
an also be dependent on the 
urrent voltage of the post-synapti
 node, asdes
ribed in Se
tion 10. Note that this non-linear step 
an be used for any type of synapse, and is 
on
eptu-ally but not mathemati
ally distin
t from the non-linearity possible after the (�rst) linear 
onvolution stepfor light 
ontrolled synapses.13.7 Inheritan
e Of Synapse TypesSynapse types may de�ned in referen
e to another by in
luding a PARENT-TYPE entry in the type parameterlist. For example:(synapse-type-def`(nmda-alpha(parent-type . fast-ex-alpha)(stati
-voltage-dependen
e-fun
tion . (SIGMOID-ARRAY -50.0 0.5,*PARTICLE-LOOK-UP-TABLE-MIN-VOLTAGE*,*PARTICLE-LOOK-UP-TABLE-MAX-VOLTAGE*,*PARTICLE-LOOK-UP-TABLE-PRECISION*))))Here, the synapse type NMDA is identi
al to the FAST-EX type (whi
h must have its own entry stored us-ing SYNAPSE-TYPE-DEF), with the additional parameter STATIC-VOLTAGE-DEPENDENCE-FUNCTION (see Se
-tion 10.7). This pro
ess 
an have an arbitrary number of levels.13.8 Derivation of Synapse Condu
tan
e Waveforms for Non-V-Dependent-Channel Type Synapses - Linear and Non-Linear StagesAs mentioned above, synapses may be driven by some event or 
ontrolling variable, that in turn eitherinitiates the appli
ation of a 
anned waveform or a waveform 
reated by the 
onvolution of the synapsetype's impulse response with the driving event. For light-driven synapses, the 
onvolution(s) of the lightstimulus and the impulse response(s) is 
omputed before the simulation integration. The parameters of theimpulse response are given as the IMPULSE-FUNCTION-ARGS entry in the appropriate type parameter liststored with SYNAPSE-TYPE-DEF (see sr
/parameters/synapse-params.lisp). For example, one synapsetype parameter list stored with SYNAPSE-TYPE-DEF may be:'(LIGHT-EX-1(GBAR-DENSITY . 10.0)(E-REV . 0.0)(CONTROL . :LIGHT)(IMPULSE-FUNCTION-ARGS . (DOUBLE-ALPHA 10 60 1)))Here, the list (DOUBLE-ALPHA 10 60 1) is used to obtain the impulse response for synapse type LIGHT-EX-1.The fun
tion to be evaluated is DOUBLE-ALPHA, applied to the arguments 10, 60, and 1. Any fun
tion whi
hreturns a 1-d sequen
e (list or array) of numbers may be used here, with the appropriate arguments. Theparameters of the impulse fun
tion may be edited with the menus [Main Simulation Menu: <Modify 
elltypes, sour
es, 
hannels or synapses> <Modify the synapses><Modify parameters of synapse types>...<Editimpulse response or event waveform>℄. The waveforms/impulse responses may also be plotted here, or fromthe <Modify the synapses> option.If the impulse/waveform fun
tion is 
ompiled with a do
umentation string (see the DEFUN form forDOUBLE-ALPHA as an example), then this string will be displayed in the menus for editing the fun
tionarguments.The 
ondu
tan
e waveforms for light-driven synapse types are derived from the 
onvolution of the lightstimulus (integrated over the spatial RF of the synapse) and the impulse response of the type (see below).The result of this 
onvolution may be passed through a nonlinearity, given by the(IMPULSE-NONLINEARITY . :RECTIFICATION)



13 SYNAPSES 84or (IMPULSE-NONLINEARITY . :THRESHOLD)(IMPULSE-NONLINEARITY-PARAMETERS . 0.2)entries in the SYNAPSE-TYPE-DEF parameter list argument. If not spe
i�ed (e.g. not expli
itly NIL), thenthe nonlinearity is a threshold at 0. The possible fun
tions and their parameters may be found in de�nitionof CONVOLVE-INPUT-ARRAY.If there is a:(LINEAR-IMPULSE-FUNCTION . (ALPHA 20))entry in the SYNAPSE-TYPE-DEF parameter list argument, then the result of the �rst (possibly non-linear)
onvolution is then 
onvolved again with a fun
tion spe
i�ed by the LINEAR-IMPULSE-FUNCTION entry. Theoutput of this se
ond 
onvolution is not passed through a subsequent nonlinearity at this point (but may beduring the simulation if a "stati
 non-linearity" as des
ribed previously is spe
i�ed).The 
on
atenation of the linear 
onvolution with a stati
 nonlinearity is useful for smoothing the re
ti�
a-tion (half-wave for ON or OFF synapse, full-wave for ON-OFF synapses) typi
ally observed for light-drivensynapses (see the fun
tions NONLINEARITY and CONVOLVE-INPUT-ARRAY).For synapse types that referen
e a 
anoni
al response waveform, the time base of the waveform is givenin the WAVEFORM-TIME-INTERVAL entry in appropriate type parameter list stored with SYNAPSE-TYPE-DEF.For example:'(AUTO-INHIBITORY(GBAR-DENSITY . 1000.0)(E-REV . -70.0)(CONTROL . :EVENT)(WAVEFORM-FUNCTION-ARGS . (ALPHA-ARRAY 10 1 T 0.2))(WAVEFORM-TIME-INTERVAL . 0.2))Depending on the fun
tion referen
ed in WAVEFORM-FUNCTION-ARGS, the WAVEFORM-TIME-INTERVAL (alwaysin millise
onds) must be 
onsistent with the arguments to the waveform generating fun
tion. In the exampleabove, the fun
tion ALPHA-ARRAY has an (optional) fourth argument whi
h spe
i�es the step size, relative tothe �rst tau argument, of the returned array. As long as the step size and the WAVEFORM-TIME-INTERVAL arethe same, then the tau spe
i�ed will be evaluated during the simulation as being in units of millise
onds.As above for the impulse fun
tion waveforms, the entry in the type parameter list for WAVEFORM-FUNCTION-ARGSmust be a fun
tion whi
h returns a list or array of numbers. Note that in both 
ases, the sequen
es are
onverted to arrays when the synapse type is 
reated.13.9 Relationship between Light Stimulus and Light Synapses13.9.1 Spatial RF Lo
ation: Relationship between Light Stimulus and SynapsesFor light-driven synapses, the proje
tion of the light (de�ned a

ording to an XY 
oordinate system) ismapped onto a 2D proje
tion of the 
ells, as des
ribed in Se
tion 23.2. Thus, the light XY is mapped tothe 
ell's XY (eg for retina or 
attened 
ortex) or to the 
ell's XZ (eg for 
orti
al neurons in radial mount).This mapping is determined by the global variable *LIGHT-STIMULUS-PLANE*, whi
h would have the value:XY in the former 
ase, and :XZ in the latter.For mapping the light XY plane to the 
ell XZ plane, the proje
tion of the anatomi
al view is taken"from the top". This means that the [X,Y℄ for the light goes to [X,-Z℄ for the 
ell.The lo
ation of a synapse's re
eptive �eld in the plane of the stimulus 
an be either the physi
al lo
ationof the synapse (default), or an arbitrary lo
ation set earlier. The former 
ase is analogous to a retinotopi
mapping, that is the light stimulus is mapped dire
tly onto the geometry of the tissue. Note that for asynapse on a segment, the lo
ation is given by the DISTAL node of the segment.If the re
eptive �eld 
enter (x or y) of a given synapse is not to be taken from the physi
al lo
ation of thesynapse, then the asso
iation list in the :PARAMETERS slot of the synapse stru
ture must in
lude the entry(LIGHT-INPUT-X . 30.5)



13 SYNAPSES 85for de�ning the X lo
ation of the RF 
enter, and/or(LIGHT-INPUT-Y . 230.0)for de�ning the Y lo
ation of the RF 
enter. Both of these parameters are taken in the light stimulus plane.If these valuess are set for a given synapse, the fun
tion GENERATE-LIGHT-INPUT-ARRAY uses the valuesfor determining the RF lo
ation; otherwise the physi
al lo
ation of the synapse is used. For example(from GENERATE-LIGHT-INPUT-ARRAY, where SYN-PARAMETERS is taken from the :PARAMETERS slot of asynapse):(or (element-parameter syn 'LIGHT-INPUT-X)(+ (first (node-absolute-lo
ation (synapse-node syn)))(* (or (element-parameter (synapse-type syn) 'LIGHT-OFFSET-DISTANCE) 0.0)(
os (or (element-parameter (synapse-type syn) 'LIGHT-OFFSET-ANGLE) 0.0))))))--> syn-rf-
enter-xThe lo
al variables LIGHT-INPUT-OFFSET-DISTANCE and LIGHT-INPUT-OFFSET-ANGLE referen
ed above aretaken from the appropriate synapse type :PARAMETERS, if de�ned (otherwise they are taken as 0).For expli
it mapping of a synapse's RF 
enter, use the fun
tionsset-synapse-rf-
enter-x syn rf�
enter�x [Fun
tion℄set-synapse-rf-
enter-y syn rf�
enter�y [Fun
tion℄where SYNAPSE is either a synapse stru
ture or a synapse name. For example, the fun
tion:map-light-inputs &key (x�max 500) (x�min �500) (y�max 500) (y�min �500)type�name (use�menus t) [Fun
tion℄uses SET-SYNAPSE-RF-CENTER-X and SET-SYNAPSE-RF-CENTER-Y to randomly map the re
eptive �eld 
entersof all the synapses of a given type (or types, if 
hosen with the menus) over a re
tangular area de�ned bythe X-MAX, X-MIN, Y-MAX, and Y-MIN arguments.See Se
tion 23 for notes on visualization of the re
eptive �eld 
enters.13.9.2 Spatial RF Fun
tionThe IMPULSE and SPATIAL-RF array entries are 
omputed in the setup sequen
e, a

ording to the appropriateparameters. The SPATIAL-RF-FUNCTION-ARGS entry, for light-dependent synapses, spe
i�es a fun
tion whi
hreturns a 2-D array that de�nes the spatial re
eptive �eld. If this entry does not exist for a light-dependentsynapse, then the spatial re
eptive �eld is a 2D impulse. For the args to GAUSSIAN-RF, see the funspe
. Ifthe ADJUST-TO-RF-AREA entry is NIL or missing, then the spatial integration is done without 
ompensatingfor the support of the of the SPATIAL-RF 2-D array. Otherwise, the integration is multiplied by the area ofthe support. The �rst 
ase is used, for example, when the 2-D array sums up to 1.0 or 0.0 (e.g. if you havea DOG-RF, and the keyword :TOTAL-VOL 0 is in
luded so that the array has zero overall weight).Spatial integration of over ea
h synapse RF is done for the entire duration of the simulation. For timesprior to and after the stimulus duration, then the integration is over a 
onstant light level set by the globalvariable *LIGHT-BACKGROUND*. Thus, L(t), the light input at time t for a synapse with a re
eptive �eldRF(x,y), is given by integrating over the support of RF():RF(x,y) * [*LIGHT-BACKGROUND* + *LIGHT-STIMULUS-STRENGTH* x Stimulus(x,y,t)℄where Stimulus(x,y,t) is non-zero for t between *LIGHT-STIMULUS-START-TIME*and before *LIGHT-STIMULUS-STOP-TIME*.In general the fun
tion Stimulus(x,y,t) ranges between 0.0 and 1.0. For example, when *LIGHT-STIMULUS*is set to :ON-SPOT, thenStimulus(x,y,t) = 0.0 before and after the stimulus "on" time, or outside the spot region= 1.0 during the stimulus "on" time and inside the spot region



13 SYNAPSES 86Conversely, when *LIGHT-STIMULUS* is set to :OFF-SPOT, thenStimulus(x,y,t) = 0.0 before and after the stimulus "on" time, or outside the spot region= -1.0 during the stimulus "on" time and inside the spot regionThe 
onvention for OFF type stimuli (0.0 when not present, -1.0 when present) is the same for :OFF-MOVING-BAR,:OFF-MOVING-SPOT, and :OFF-BAR. In these 
ases, the values of *LIGHT-BACKGROUND*and *LIGHT-STIMULUS-STRENGTH*have to be 
hosen to get the �nal desired light waveform.As dis
ussed above, the waveform L(t) is then 
onvolved with the synapse type's impulse response, andthe result passed through a non-linearity expli
itly asso
iated with the impulse response. Again, if spe
i�ed,there 
an be an additional (linear) 
onvolution step. Finally, the resulting waveform is multiplyed by thesynapse :GBAR value during the simulation to obtain the �nal value of the synapti
 
ondu
tan
e.13.9.3 Spatial RF Lo
ation: Relationship between Moving Light Stimulus and SynapsesLight stimulus motion is de�ned with respe
t to stimulus frame (referred to above by *LIGHT-STIMULUS-PLANE*). The origin of the stimulus frame is shifted with respe
t to the anatomi
al 2d 
oordinate frameby *LIGHT-START-POSITION-X* and *LIGHT-START-POSITION-Y* (mi
rons). Further, the stimulus frameis rotated around its origin 
ounter 
lo
kwise by *LIGHT-THETA* (in radians). Thus, to translate fromanatomi
al (2D) 
oordinates (XY) and stimulus frame 
oordinates (X'Y'):X = (X' * 
os[*LIGHT-THETA*℄ - Y' * sin[*LIGHT-THETA*℄) - *LIGHT-START-POSITION-X*Y = (X' * sin[*LIGHT-THETA*℄ + Y' * 
os[*LIGHT-THETA*℄) - *LIGHT-START-POSITION-Y*X' = (X - *LIGHT-START-POSITION-X*) * 
os[*LIGHT-THETA*℄+ (Y' - *LIGHT-START-POSITION-Y*) * sin[*LIGHT-THETA*℄Y' = (*LIGHT-START-POSITION-X* - X) * sin[*LIGHT-THETA*℄+ (Y' - *LIGHT-START-POSITION-Y*) * 
os[*LIGHT-THETA*℄The straight line traje
tory for moving bars and spots is along the positive(negative) Y' axis when *LIGHT-DIRECTION*is T(NIL), and the traje
tory begins at (X'Y')=(0,0). Bar stimuli are de�ned su
h that they are orientedwith their length parallel to the X' axis and the width parallel to the Y' axis.13.9.4 Spatial RF Lo
ation: Relationship between Apparent Motion Light Stimulus andSynapsesAs above with regular motion, apparent motion stimulus parameters are de�ned with respe
t to stimulusframe (referred to above by *LIGHT-STIMULUS-PLANE*) - the origin of the stimulus frame is shifted with re-spe
t to the anatomi
al 2d 
oordinate frame by *LIGHT-START-POSITION-X*and *LIGHT-START-POSITION-Y*(mi
rons) and the stimulus frame is then rotated around its origin 
ounter 
lo
kwise by *LIGHT-THETA*(radians). The global variables *BAR-A-POSITION-X*, *BAR-A-POSITION-Y*, *BAR-B-POSITION-X*, and*BAR-B-POSITION-Y* determine the �nal positions of the A and B bars in the shifted and rotated stimulusframe. As with single bar stimuli, the length and width of the bars are taken as the dimensions along thestimulus frame X' and Y' axes, respe
tively.13.9.5 Stimulus VisualizationIn all 
ases, it is a good idea to 
he
k stimulus parameters by seeing how they are rendered with the histologygraphi
s.13.9.6 Fast Light-Driven Synapse ConvolutionsThe �rst step for the pre-simulation 
al
ulation of light-driven synapti
 inputs is the spatio-temporal inte-gration of the stimulus over the duration of the simulation with the spatial re
eptive �eld of ea
h synapse.This step yields a one-dimensional light input waveform that will then be passed through the linear andnon-linear stages of the synapse type impulse response as des
ribed above.



13 SYNAPSES 87If the global variable *COMPUTE-ALL-LIGHT-INPUTS* is T, then the pro
essing of the light input waveformis done expli
itly for every synapse. However, when *COMPUTE-ALL-LIGHT-INPUTS* is NIL (default), whenthe �rst synapse is pro
essed its light input waveform is stored with the synapse type information. When thenext synapse of the same type is pro
essed, the light input waveform for this synapse is 
ompared with thepreviously stored light input waveform. If the two waveforms are identi
al, given a s
ale fa
tor and a shiftfor synapse types with no non-linear stage, and given a shift for those types with a non-linear stage, then thesynapse input is not pro
essed further, but rather a referen
e to the earlier 
omputed light input waveformis stored. Otherwise, the new light input waveform is stored with the type as was done for the �rst synapse,and the �nal 
ondu
tan
e waveform is 
omputed. These steps of partial evaluation of the synapse input andsubsequent 
omparison with earlier 
omputed light input waveforms is repeated for the remaining synapses.Thus during the simulation run, the 
ondu
tan
e input for ea
h synapse is taken from a waveform that waseither 
omputed espe
ially for that synapse, or from a waveform that is from a synapse whose light inputwaveform has the same time 
ourse (and magnitude for nonlinear synapse types), with the �nal 
ondu
tan
ewaveform shifted and s
aled appropriately.The motivation for this algorithm is to avoid unne
essary 
onvolution of the light input waveform withsynapse impulse responses prior to simulations.Asso
iated with this method is the global variable *SYNAPSE-NAMES-TO-DO-FIRST*. This variable is a listof either synapse names or node names, and the 
ondu
tan
e waveforms for the synapses that 
orrespond tothese referen
es are 
omputed �rst. In this way, you 
an 
hoose synapses who will have the longest responses,thereby redu
ing the number of referen
e waveforms that must be stored in order to a

ount for all synapseresponses. This variable is also set via the histology element menu.If the light stimulus is a 
ashing spot whi
h 
overs the re
eptive �elds of all the synapses, then a similarshort 
ut may be used in 
onvolving the synapti
 waveforms prior to the simulation. This short 
ut exploitsthe fa
t that for this stimulus the synapti
 waveforms of synapses of the same type will be identi
al. Thisoption may be enabled by 
hoosing the "Do Fast Rf Spot 
onvolution for full �eld spot" in the "ParametersFor SPOT Stimulus" menu. *FAST-FULL-FIELD-SPOT* is the global variable whi
h enables this feature.13.9.7 Spe
ifying Light Stimulus ParametersLight stimulus parameters may be de�ned in �les by setting the appropriate global variables. For example,a 50 by 500 �m bar moving from left to right at 2 �m/millise
ond, starting at position X = -300�m, Y =0�m at time = 0 would be set up by the following variable settings:(setq*enable-light* t*light-speed* 2.0*bar-length* 500.0 *bar-width* 50.0 *light-stimulus* :ON-MOVING-BAR*light-theta* (/ pi-single 2) ; Use pi-single sin
e we need a single float*light-dire
tion* nil ; => Movement is opposite to *light-theta**light-stimulus-start-time* 0.0 ; Time to start bar moving, millise
onds*light-stimulus-stop-time* 100000.0 ; This is just larger than the simulation time*light-start-position-x* -300.0 ; Stimulus 
enter at *motion-start-time* (uM)*light-start-position-y* 0.0)The options for the *LIGHT-STIMULUS* in
lude::APPARENT-MOTION :MOVING-SPOT:ON-MOVING-BAR :OFF-MOVING-BAR:ON-SPOT :ON-BAR :OFF-SPOT :OFF-BAR:ANNULUSAsso
iated parameters in
lude:*enable-light* T or NIL - when nil, light synapses are not evaluated*light-stimulus-start-time* millise
onds



13 SYNAPSES 88*light-stimulus-stop-time**light-stimulus-strength* arbitrary units (default 1)*light-ba
kground* Light ba
kground level in arbitrary units (default 0)*light-theta* Orientation of stimulus (and its traje
tory ifmoving), with 0 being verti
al up - in radians*light-stimulus-plane* :XY for retina, :XZ for radial mount 
orti
al 
ells.Center of stimulus (�m) at *MOTION-START-TIME* (also for stati
 stimuli) -*light-start-position-x* *light-start-position-y*For motion stimuli:*light-speed* Mi
rons per millise
ond*light-dire
tion* T (nil) => movement dire
tion with (opposite) to *light-theta**motion-start-time* Time to start moving, millise
ondsFor bars (�m):*bar-width* *bar-length*For an aperture (when *USE-APERTURE* is T), in �m:*aperture-radius* *aperture-
enter-x* *aperture-
enter-y*For apparent motion stimulus (�m):*bar-a-width* *bar-a-length**bar-a-position-x* *bar-a-position-y**bar-b-width* *bar-b-length**bar-b-position-x* *bar-b-position-y*For apparent motion stimulus (millise
onds):*bar-a-start-time* *bar-a-stop-time**bar-b-start-time* *bar-b-stop-time*For apparent motion stimulus (arbitrary units, default 1):*bar-a-intensity* *bar-b-intensity*For spots (�m):*spot-outside-diameter* *spot-inside-diameter*13.10 Q10's For SynapsesThe Q10 for synapti
 
ondu
tan
es (not kineti
s) is de�ned identi
ally as that for 
hannels (see Se
tion 11).13.11 Gap Jun
tions(NOT ENABLED YET)A gap jun
tion between nodes i and j is modelled as a re
ipro
al pair of 
hannels with an identi
al voltageand time independent 
ondu
tan
e, one for ea
h node. In addition, the reversal potential for the 
hannelin node i is given by the voltage at node j, and vi
a-versa. This should work sin
e the voltage used forthe reversal potential will be out of step with the evaluation time. In other words, there will always be anon-zero delay for signal propagation through the gap jun
tion.
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ellaneous - Controlling Synapse Setups, et
.For all synapse types, the boolean variable:*ENABLE-SYNAPSES*allows the evaluation of synapses during the simulation. Synapses of ea
h 
ontrol are setup prior to ea
hsimulation a

ording to the following global variables:*SETUP-VOLTAGE-SYNAPSES* *SETUP-LIGHT-SYNAPSES**SETUP-AUTO-SYNAPSES* *SETUP-TONIC-SYNAPSES*The default for ea
h of these is T. However, if there is no 
hange in the synapses of a given 
ontrol type(i.e. deletions, 
reationgs, blo
king, timing, or stimuli) then the 
orresponding 
ag may be set NIL to speedthings up. On the other hand, there is NO automati
 
he
king to see that in fa
t there is no 
hange with agiven group of synapses; therefore it is the responsibility of the user to set these 
ags appropriately.To plot the impulse responses of the synapses, use the fun
tion PLOT-SYNAPSE-IMPULSE, or use the menus(see above). To plot the light input to light 
ontrolled synapses, use:plot-light-input &optional syns [Fun
tion℄where SYNS is a synapse name or pointer, or a list of names or pointers. When SYNS is not supplied, thena menu prompts for the plotted synapses.13.13 Spe
ifying Trigger Times (Events or Delays) for Event SynapsesThe event times for event synapses (the :EVENT-TIMES slot, whi
h is a list of single-
oat times in millise
onds)
an be set dire
tly using the fun
tion:add-events syns�or�types event�times [Fun
tion℄where EVENT-TIMES (single number or a list of numbers) is added to all (event) synapses referen
ed bythe atom or list SYNS-OR-TYPES. Delays may also be set with the menu 
alled by:edit-synapse-event-times syn [Fun
tion℄This fun
tion is a

essible from the main menu sequen
e.Other fun
tions of interest are:
lear-events &optional syns�or�types [Fun
tion℄remove-events syns�or�types event�times [Fun
tion℄add-poisson-events syns�or�types lambda�spe
 start stop &key (step 1.0) (time�o�set0.0) (lambda�
oeÆ
ient 1.0) (min�interval�value 1.0)
lear�events [Fun
tion℄print-synapse-events &optional type [Fun
tion℄histogram-synapse-events &key (bins 10) (min�time 0) type syn (max�time*user�stop�time*) [Fun
tion℄
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atter-synapse-distan
es-event-times &key (synapse�types (synapse�types))(white�is�maximum�p t) (x�are�fns t)(y�are�fns t) (width 400) (height 400)plot�type min�plot�time�given�by�events(plot�events�prior�to�0 t)title (3dplot�s
ale 30.0) (3dplot�aspe
t 0.2)(3dplot�time�bins (/ *user�stop�time*100)) (3dplot�distan
e�bins 20)(minimum�distan
e 0) maximum�distan
e(maximum�time *user�stop�time*)(minimum�time 0.0) (
ell *
ell*)distan
e�plot�in
rement
[Fun
tion℄

When the global variable *PRINT-SYNAPSE-TOTAL-EVENTS* is T, then:print-synapse-total-events [Fun
tion℄is 
alled at the end of the simulation, printing out the total number of events of all the voltage and event
ontrolled synapses.When the global variable *PRINT-SYNAPSE-EVENT-TIMES* is T, then:print-synapse-events &optional type [Fun
tion℄is 
alled at the end of the simulation, printing out the individual events of all the voltage and event 
ontrolledsynapses.13.14 Depressing/Fa
ilitating Synapses: Dynami
 Synapti
 WeightsDepressing synapses a

ording to the model proposed by Markram and Tsodyks (1996 is enabled by in
ludingthe following entries in a SYNAPSE-TYPE-DEF form:(1st-order-depressing-dynami
s . t)(tau-re
overy . 800) ;ms(release-fra
tion . 0.2)Likewise, the 
ondu
tan
e waveform for the apriori events assigned to event synapses may be s
aled perevent by spe
ifying numeri
 lists in either(element-parameter synapse-type 'event-weights)or(element-parameter syn 'event-weights)In the �rst 
ase it is assumed that all synapses of a given type have the same number of events; in both 
asesthe lists are mat
hed one by one to the assigned synapti
 events.Seesort-s
ale-and-shift-event-times syn [Fun
tion℄generate-1st-order-depressing-weights-list syn sorted�events [Fun
tion℄



13 SYNAPSES 9113.15 Event Generators and FollowersEvent generators redu
e evaluations for axons and synapses [VOLTAGE, LIGHT and LIGHT-EVENT℄ whose
ontrol parameters are identi
al for a given simulation. Thus, for LIGHT and LIGHT-EVENT synapse types,
omputation of the light response (prior to the simulation), and for VOLTAGE synapse types, dete
tion ofsynapti
 events (during the simulation), is done only for those synapses of a given type whi
h are event-generators. Likewise, for axons, dete
tion of spikes (during the simulation), is done only for axons whi
h areevent-generators.For VOLTAGE 
ontrolled synapse types, a synapse whi
h is an event generator a
ts as an event dete
torfor all other synapses of the same type that have the same pre-synapti
 node - these synapses are the eventfollowers. For LIGHT and LIGHT-EVENT 
ontrolled synapse types, the light response (for LIGHT andLIGHT-EVENT) and event generation (for LIGHT-EVENT) applied to an event generator is used by allother synapses of the same type that have the same re
eptive �eld 
hara
teristi
s, for example the XY
oordinates of the RF 
enter.For axons, an event generator serves as an event dete
tor for all axon of the same type and with the sameproximal-node.Thus, in all 
ases the event generator assigned to a synapse or axon must be of the same type.When a synapse or axon is 
reated, its :EVENT-GENERATOR is initialized to point to itself. Note that forsynapses this is only relevant if the synapse type is LIGHT, LIGHT-EVENT, or VOLTAGE 
ontrolled.The :EVENT-GENERATOR slot and the assignment of event followers is normally updated at the begin-ning of ea
h simulation by the fun
tions SETUP-VOLTAGE-SYNAPSES and SETUP-LIGHT-SYNAPSES, whi
h are
alled depending on the values of *SETUP-LIGHT-SYNAPSES* and *SETUP-VOLTAGE-SYNAPSES*, respe
tively.These fun
tions set up event generators and followers by appropriate 
alls of SETUP-EVENT-GENERATORS-AND-FOLLOWERS-OF-TYPE(see below).Event generators may also be set by expli
it (e.g. in a user s
ript) invo
ation of eitheruser-setup-event-generators-and-followers event�generator event�followers [Fun
tion℄whi
h allows an arbitrary assignment of generators and followers, orsetup-all-event-generators-and-followers [Fun
tion℄whi
h 
alls SETUP-EVENT-GENERATORS-AND-FOLLOWERS-OF-TYPE for all axon and synapse types. Note thatthis fun
tion lo
ally binds *SETUP-EVENT-GENERATORS-AND-FOLLOWERS* to T and *USER-SPECIFIED-EVENT-ELEMENT-SETS*to NIL.The fun
tionsetup-event-generators-and-followers-of-type event�elements [Fun
tion℄
hooses event generators out of the list of EVENT-ELEMENTS, all of whi
h must be the same synapse oraxon type, and assigns event followers for ea
h event generator. This assignment is initially predi
ated on(and *SETUP-EVENT-GENERATORS-AND-FOLLOWERS*(not *USER-SPECIFIED-EVENT-ELEMENT-SETS*)*ENABLE-EVENT-GENERATORS*)Event generator based evaluations are enabled by*enable-event-generators* t [Variable℄The variable



13 SYNAPSES 92*setup-event-generators-and-followers* t [Variable℄enables the automati
 assignment of event element sets at the beginning of every simulation, as long as*USER-SPECIFIED-EVENT-ELEMENT-SETS* is NIL. This variable may be set to NIL after a simulation for moreeÆ
ien
y in subsequent simulations, or may always be NIL as long as the fun
tion SETUP-ALL-EVENT-GENERATORS-AND-FOLLOWERSis expli
itly 
alled when the 
ir
uit is setup or 
hanged.When the variable*user-spe
i�ed-event-element-sets* nil [Variable℄is T, then the user has the responsibility to setup event generators and followers (e.g. with 
alls to USER-SETUP-EVENT-GENERATORS-AND-FOLLOWERSor SETUP-ALL-EVENT-GENERATORS-AND-FOLLOWERS) before a simulation.Note: With arbitrary evaluation order of voltage synapses, during a given time step an event generatormay be evaluated after one of its followers. This imposes a minimum intrinsi
 delay for that follower givenby the duration of the next time step.Future revisions will �x this if there are enough 
omplaints.
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al DetailsThis se
tion des
ribes some spe
i�
 biophysi
al (and related) issues.14.1 Temperature Dependen
e - Element Q10sSee also Se
tions 11, 13 and 15.Q10s (and asso
iated referen
e temperatures) may be spe
i�ed for types of synapses, 
hannels, parti
les,
on
entration parti
les, bu�ers, pumps and 
on
entration integrators. The Q10 for a synapse or 
hanneltype de�nes the temperature dependen
e for asso
iated elements' maximum 
ondu
tan
es. The Q10 fora parti
le, 
on
entration parti
le, bu�er or pump type de�nes the temperature dependen
e for asso
iatedelements' kineti
s. Finally, the Q10 for a 
on
entration integrator type de�nes the temperature dependen
efor the e�e
tive di�usion 
oeÆ
ient (:MULTI-SHELL 
lass), the time 
onstant (:FIRST-ORDER 
lass), or theDCDT-FUNCTION of :GENERIC 
lass 
on
entration integrators.In all 
ases, Q10 adjustment is only made when the global variable *IGNORE-Q10* is NIL (default). Thesimulation temperature is set by the global variable *TEMP-CELCIUS* (in degrees Cel
ius, 27.0 default). Ifan element does not have a expli
it Q10 fa
tor, then the default is 1.0 (i.e. no temperature dependen
e).Q10 
oeÆ
ients are 
al
ulated by the parti
ular Q10 
onstant raised to (T � Tref )=10, where T is thetemperature of the simulation, and Tref is the referen
e temperature of the measured Q10.It is important to remember the provision above for 
ondu
tan
e temperature dependen
e, as well as themore 
ommonly 
onsidered temperature dependen
e of parti
le gating kineti
s.Relevant fun
tions in
lude:q10-tau-fa
tor referen
e�temp temp q10 &optional (ignore�q10 *ignore�q10*) [Fun
tion℄q10-rate-fa
tor referen
e�temp temp q10 &optional (ignore�q10 *ignore�q10*) [Fun
tion℄where the former 
al
ulates the Q10 fa
tor for time 
onstants (as temperature goes up, � goes down), andthe latter 
al
ulates the Q10 fa
tor for rate 
onstants (as temperature goes up, so does rate).14.2 Changing Temperature in S
riptsThe global variable *TEMP-CELCIUS* may be 
hanged by the user. If the temperature is 
hanged betweensimulations then the fun
tion UPDATE-TEMPERATURE-DEPENDENT-PARAMETERS is 
alled automati
ally at thebeginning of the simulation.14.3 Somati
 I-V Chara
teristi
The fun
tions:plot-iv &optional 
ells [Fun
tion℄plot-ivs &optional 
ells (use�menu t) use�one�window [Fun
tion℄plot simple steady-state somati
 
urrent-voltage (I-V) relationships for the loaded 
ells. If the optionalarguments are not supplied then PLOT-IV plots the 
hara
teristi
 for the last 
reated 
ell, and PLOT-IVSpresents a menu to 
hoose a 
ell or 
ells. I-V relations are 
al
ulated using the following assumptions:1. Passive dendriti
 tree (any 
hannels in the tree are disabled).2. Steady-state 
al
ium 
on
entrations, assuming the somati
 potential is at resting potential.3. Measurement made under ideal (somati
) voltage 
lamp.
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tions 
an be invoked from the menus. If there are any non-somati
 non-linearities, more realisti
I-V 
urves require an expli
it set of (somati
) voltage 
lamp simulations, and 
olle
tion of the 
orresponding
lamp voltages and 
urrents.14.4 SpinesThe fun
tion GROW-SPINES adjusts membrane resistivities and 
apa
itan
es to fold-in "virtual" spines, underthe assumption that the voltage drop or other 
ompartmentalization of the spine ne
k is negligible:grow-spines ne
k�length ne
k�diameter head�diameter density &key 
ell�type seg-ments (update�linear�parameters t) [Fun
tion℄The spine model here is of a 
ylindri
al ne
k 
apped by a spheri
al head. Spine area is given by the areaof the ne
k (not in
luding ends) plus the area of the head minus the area of the ne
k end (to partially
ompensate for the jun
tion between the head and ne
k).If SEGMENTS is a list of segments, then a 'MEMBRANE-AREA-COEFFICIENT entry is added to the :PARAMETERSof ea
h segment, otherwise if CELL-TYPE is supplied, the :CM-DENDRITE and :RM of the referred 
ell typeare adjusted, otherwise (if both keyword args are NIL) the :CM-DENDRITE and :RM of all the 
ell types areadjusted. NECK-LENGTH, NECK-DIAMETER, HEAD-DIAMETER are in mi
rons. DENSITY is num-ber of spines per square mi
ron of dendrite (non-spine) membrane. The update-linear-parameters argument
ontrols whether or not the membrane parameters for the individual segment stru
tures and the linear inputparameters for the 
ells are updated to re
e
t the addition of the virtual spines.Using the SEGMENTS argument allows a variable spine density for a given 
ell, while referen
e to theCELL-TYPE (or all 
ell types) implies that the spine density is 
onstant throughout the dendriti
 tree. Thisfun
tion does not add virtual spines to the soma.More elaborate spines may be modeled by appropriate anatomi
al 
onstru
tion using 
alls to CREATE-SEGMENT.
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entration Integrators, Pumps and Bu�ersThis se
tion des
ribes 
on
entration integrators and asso
iated pumps and bu�ers. This do
umentation isnot 
omplete. Refer also to sour
e 
ode in 
on
-part.lisp, 
on
-int.lisp, buffer.lisp, and pump.lisp.See also Se
tion 24.15.1 The Classes of Con
entration Integrator TypesCon
entration integrators may be either intra
ellular or extra
ellular, and are "fed" from 
hannels or synapseswhose ioni
 spe
ies in
lude the spe
ies spe
i�
 to the integrator in question. The CONC-INT-TYPE-DEFma
ro,dis
ussed in Se
tion 9, 
reates an entry in the parameter library for 
on
entration integrator types.At present there are three 
lasses of 
on
entration integrator types, in
luding :FIRST-ORDER, :MULTI-SHELLand :GENERIC. :FIRST-ORDER 
lass 
on
entration integrator types have only a single 
ompartment. Both:MULTI-SHELL and :GENERIC 
lasses may have 1 to 3 variable 
on
entration 
ompartments, and a 
onstant
on
entration "
ore", as des
ribed in Se
tion 15.3.15.1.1 Referen
e Volumes Asso
iated With Con
entration IntegratorsThe volumes of the 
on
entration integrator 
ompartments are determined either impli
itly or expli
itly, asexplained below. In all 
ases of intra
ellular 
on
entration integrators, the total volume asso
iated with agiven 
ell element (soma or segment) is given by the fun
tion:element-
on
entration-volume element &optional 
onsider�virtual�elementsmodel�type [Fun
tion℄This returns the volume in 
ubi
 mi
rons of the 
ell element asso
iated with ELEMENT (whi
h is givenby the fun
tion ELEMENT-VOLUME), minus the volume of any nu
leus asso
iated with the 
ell element, asindi
ated by the element parameter 'NUCLEUS-DIAMETER (mi
rons).15.2 :FIRST-ORDER Con
entration Integrator TypesCon
entation dynami
s of :FIRST-ORDER 
on
entration integrators are based on the following di�erentialequation: d[X ℄=dt = � [X ℄� [X ℄0� +KIX �K 0JX (4)where [X ℄0 is the equilibrium 
on
entration of X , � is the original 
hara
teristi
 time 
onstant of theintegrator adjusted for the integrator's Q10 rate 
oeÆ
ient fa
tor �Q10 , thus � = �original=�Q10 . IX is thetotal membrane 
urrent of ion X from 
hannels or synapses, and K is a 
onstant 
onverting that 
urrent toa 
on
entration 
hange, taking into a

ount the valen
e of X and the volume of the integrator 
ompartment.JX represents the membrane pump 
ux of X per unit area, and K 0 is a 
onstant 
onverting that 
urrent toa 
on
entration 
hange taking into a

ount the membrane area asso
iated with the pump and the volume ofthe integrator 
ompartment.To solve for [X ℄ at time tn+1, and using the approximations:d[X ℄=dt � [X ℄n+1 � [X ℄n�t[X ℄ � [X ℄n+1 + [X ℄n2where �t = tn+1 � tn, we arrive at the following (impli
it) integration formula:[X ℄n+1 = [X ℄n(�t=2� �)��t[X ℄0 +�t�(KIX �K 0JX)�� ��t=2 (5)An example of a :FIRST-ORDER 
on
entration integrator type de�nition is given in the following CONC-INT-TYPE-DEF(from sr
/parameters/traub91-
hannels.lisp, derived from Traub et al., 1991):
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on
-int-type-def`(
a-in-traub91(
lass . :first-order)(spe
ies . 
a)(valen
e . 2)(intra-p . t) ; Intra
ellular 
on
entration(tau . 13.33) ; millise
onds(juxtamembrane-shell-thi
kness . 1.0) ; mi
rons(
ore-
on
 . 0.0e-5))) ; mMAnother example of this 
lass may be found in sr
/parameters/warman94-
hannels.lisp, derived fromWarman et al., 1994. If there is no TAU entry in the CONC-INT-TYPE-DEF for a :FIRST-ORDER 
on
entrationintegrator, then it is taken to be in�nite, and removal of ion is a

omplished by membrane pumps alone (see,for example, the de�nition of CA-IN-JAFFE-94 in sr
/parameters/jaffe94-
hs.lisp, derived from Ja�eet al., 1994).15.2.1 Volumes asso
iated with :FIRST-ORDER 
on
entration integrator typesUnless an expli
it de�nition is given (see Se
tion 15.3.1), the volume of a :FIRST-ORDER type 
on
entrationintegrator is 
al
ulated a

ording to the value of the juxtamembrane shell thi
kness parameter of the type,and the surfa
e area of the asso
iated 
ell element, as given in the �rst two lines of Table 3 (for 
ompartment\Shell 1").15.3 Geometry of Multiple Compartment Con
entration IntegratorsAs stated above, there 
an be up to three 
ompartments and a 
ore in :MULTI-SHELL or :GENERIC 
on-
entration integrator types, named shell 1, shell 2, shell 3, and 
ore. All integrator types have a shell 1,and the in
lusion of other 
ompartments is determined by SHELL-2-P, SHELL-3-P and CORE-P entries in theCONC-INT-TYPE-DEF form (ea
h of these default to NIL).The fun
tional geometry of the integrator 
ompartments is de�ned by:� The volumes of the 
ompartments.� The 
onne
tivity of the 
ompartments.� The 
ompartments whi
h 
ommuni
ate dire
tly with the membrane (shell 1 and/or shell 2).Compartments volumes, inter
ompartment di�usion areas and membrane areas may be de�ned expli
itelyor impli
itly. Compartment 
onne
tivity is determined by the di�usion 
oeÆ
ients assigned to ea
h pair of
ompartments, where a zero value of a given pair implies that they are not 
onne
ted.We shall �rst des
ribe how expli
it formulae for these parameters may be de�ned. We then will des
ribethe impli
it algorithm that is built in to the system.15.3.1 Expli
it de�nition of 
ompartment volumesExpli
it de�nition of 
ompartment volumes is a

omplished by in
luding a VOLUMES entry in the CONC-INT-TYPE-DEFform. This entry is a list of 
ompartment names and fun
tions for determining their volumes. These fun
tionsmust take an instan
e of a 
on
entration integrator as a single arg, and return the appropriate 
ompartmentvolume in �m3. For example:(volumes . ((1 (lambda (
int)(* (element-volume 
int) .01)))(2 (lambda (
int)(* (element-volume 
int) .09)))(3 (lambda (
int)(* (element-volume 
int) .4)))(
ore (lambda (
int)(* (element-volume 
int) .5)))))
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ribed in Se
tion 4.8, ELEMENT-VOLUME returns the total volume in 
ubi
 mi
rons of the 
ell elementasso
iated with its argument (here, a 
on
entration integrator CINT).15.3.2 Expli
it de�nition of inter-
ompartment areasExpli
it de�nition of inter-
ompartment di�usional areas is a

omplished by in
luding a DIFFUSION-AREASentry in the CONC-INT-TYPE-DEF form. This entry is a list of pairs of 
ompartment names and either anumber or fun
tion for determining their di�usional areas. These fun
tions must take an instan
e of a
on
entration integrator as a single arg, and return the appropriate membrane area in �m2. For example:(diffusion-areas . (((1 3) (lambda (
int)(* (element-area 
int) .1)))((2 3) 1.342e2)((
ore 3) (lambda (
int)(* (element-area 
int) .5)))))There is no assumed ordering of the 
ompartment pairs. As des
ribed in Se
tion 4.8, ELEMENT-AREA returnsthe total area in square mi
rons of the 
ell element asso
iated with its argument (here, a 
on
entrationintegrator CINT).15.3.3 Expli
it de�nition of 
ompartment membrane areasExpli
it de�nition of inter-
ompartment di�usional areas is a

omplished by in
luding a MEMBRANE-AREASentry in the CONC-INT-TYPE-DEF form. This entry is a list of 
ompartment names and either a number orfun
tion for determining their membrane areas. Normally this will apply to shells 1 and 2 only, and areused for 
al
ulating membrane areas for any pumps asso
iated with a given 
ompartment (see Se
tion 15.10).These fun
tions must take an instan
e of a 
on
entration integrator as a single arg, and return the appropriatemembrane area in �m2. For example:(membrane-areas . ((1 (lambda (
int)(* (element-area 
int) .1)))(2 (lambda (
int)(* (element-area 
int) .3)))))15.3.4 Impli
it de�nition of 
ompartment volumesIf there are no VOLUMES spe
i�ed for a 
on
entration integrator type, then 
ompartment volumes are de-termined with a formula that depends on the SHELL-2-P, SHELL-3-P and CORE-P boolean entries, andon numeri
 values of JUXTAMEMBRANE-SHELL-THICKNESS, ALPHA-S and INNER-SHELL-THICKNESS entries inthe CONC-INT-TYPE-DEF form. The various layouts that result from this formula are shown in Figure 3.This impli
it 
al
ulation of 
on
entration integrator 
ompartment volumes is summarized in Table 3. Notein parti
ular that if JUXTAMEMBRANE-SHELL-THICKNESS is 0 (the default value) then there is only one
ompartment (shell 1), and it o

upies the entire element 
on
entration volume (given by the fun
tionELEMENT-CONCENTRATION-VOLUME).Referring to this Figure, we 
an make a distin
tion between physi
al shells and the name of the 
ompart-ments: physi
al shells 
an in
lude a \juxtamembrane" shell, and up to two inner shells.As stated, there is always a shell 1, and it is always bounded on one side by the membrane; in otherwords it either makes up part or the entirety of the juxtamembrane shell. Shell 2 may be thought of as eitherbounded by the membrane, in whi
h 
ase it is also part of the juxtamembrane shell, or be bounded by shell 1,in whi
h 
ase shell 2 is really a shell. Note, however, that the JUXTAMEMBRANE-SHELL-THICKNESS parametersapplies to both shells 1 and 2, even when shell 2 is not phenominologi
ally part of the juxtamembrane shell.Shell 3 may be bounded on the membrane side either by the juxtamembrane shell or, if shell 2 is boundedby shell 1, bounded by shell 2. The 
ore 
ompartment is always bounded by outermost (innermost forextra
ellular integrators) variable 
on
entration shell; thus it is always arranged as the innermost (outermostfor extra
ellular integrators) 
ompartment.



15 CONCENTRATION INTEGRATORS, PUMPS AND BUFFERS 98Compartment Djuxta Dinner SHELL-2-P SHELL-3-P CORE-P Compartment Volume LayoutShell 1 =0 n/a NIL n/a n/a Vtot A�>0 n/a NIL n/a n/a Djuxta �A A,D=0 n/a T n/a n/a �S � Vtot B,G�>0 n/a T n/a n/a �S �Djuxta �A C,E,F,H,I,JShell 2 =0 n/a T n/a n/a (1� �S)� Vtot B,G�>0 n/a T n/a n/a (1� �S)�Djuxta �A C,E,F,H,I,JShell 3 =0 n/a n/a n/a n/a n/a no shell 3>0 >0 n/a T n/a Dinner � A C,F,H,J>0 =0 n/a T n/a Vtot � Vjuxta C,H�Core =0 n/a n/a n/a n/a n/a no 
ore>0 =0 n/a n/a n/a n/a no 
ore>0 n/a n/a NIL T Vtot � Vjuxta D,E,I�>0 >0 T T T Vtot � (Vjuxta + Vinner) F,J�Table 3: Impli
it 
al
ulation of 
on
entration integrator 
ompartment volumes. Djuxta and Dinner are the valuesof the JUXTAMEMBRANE-SHELL-THICKNESS and INNER-SHELL-THICKNESS entries of the CONC-INT-TYPE-DEF,respe
tively, in �m. SHELL-2-P, SHELL-3-P and CORE-P are boolean CONC-INT-TYPE-DEF keywords (all defaultto NIL). A = 
ell element surfa
e area, Vtot = 
ell element volume, Vjuxta = volume shell 1 + volume shell 2,Vinner = volume shell 3. \n/a" means not appli
able. \Layout" refer to those shown in Figure 3. Note that ea
hof these CONC-INT-TYPE-DEF keyword entries are names of 
on
entration integrator type slots as well. Entrieswhi
h in
lude an \*" in the Layout 
olumn are only appropriate for intra
ellular 
on
entrtation integrator types.Note that the volume of a 
ore 
ompartment has no e�e
t on the 
on
entration dynami
s sin
e by de�nition the
on
entration of the 
ore is 
onstant - this volume will only e�e
t the measurement of the total 
on
entration ofthe integrator (Se
tion 15.6).In the 
ase of intra
ellular integrators, the volume of 
ompartment(s) 
losest to the 
enter may be eitherbe a fun
tion of their thi
kness (shell 1, shell 2, juxtamembrane 
ombination of shells 1 and 2, or shell 3),or given by the total volume of the soma or segment minus the volumes of any 
omparments lying 
loser tothe membrane (the previous shells or the 
ore).The volume of shell 1 is given by the produ
t of the :ALPHA-S slot of the 
on
entration integratortype, the surfa
e area of the 
ell element, and the :JUXTAMEMBRANE-SHELL-THICKNESS of the 
on
entrationintegrator type. The volume of shell 2 is given by the produ
t of 1 minus the value in the :ALPHA-S slot of the
on
entration integrator type, the surfa
e area of the 
ell element, and the thi
kness of the juxtamembraneshell. The volume of the inner shell 3 is given by the produ
t of the surfa
e area of the 
ell element, and the:INNER-SHELL-THICKNESS of the 
on
entration integrator type.15.4 :MULTI-SHELL Con
entration IntegratorsFor the :MULTI-SHELL 
lass, di�usional 
ux between two 
ompartments i and j is given by the standardFi
k's relationship: JX(ij) = DijAij [X ℄i � [X ℄j�xij (6)where JX(ij) is the 
ux of X from 
ompartment i to 
ompartment j, Dij is the di�usion 
oeÆ
ient betweenthe 
ompartments (given in 
m2 se
�1), Aij is the di�usional area between the 
ompartments (given in�m2), and [X ℄i and [X ℄j are the 
on
entrations of X in 
ompartments i and j, respe
tively. �xij is thedi�usion distan
e appropriate for 
ompartments i and j. The total 
hange in the 
on
entration of X for a
ompartment i is then: d[X ℄i=dt = KIX �K 0JX � 1=ViXj 6=i JX(ij) (7)where Vi is the volume of 
ompartment i. KIX and K 0JX , a

ounting for the membrane pore 
urrent andmembrane pump 
ux for 
ompartment i, respe
tively, are as des
ribed in Equation 4. By de�nition, the
hange in 
on
entration of a 
ore 
ompartment is always zero. Numeri
al integration for the asso
iated
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it (trapezoidal integration) or expli
it (forwardEuler) formula, depending on the value of the global variable *IMPLICIT-CONC-INT-INTEGRATION* (defaultT). Currently, impli
it integration of :MULTI-SHELL 
on
entration integrators is disabled when there is noshell 3 and there is di�usion between shells 1 and 2 and the 
ore (
orresponding to layout I in Figure 3).15.4.1 :MULTI-SHELL Di�usion CoeÆ
ientsDi�usion 
onstants are determined by the DIFFUSION-COEFFICIENT entry in the CONC-INT-TYPE-DEF form.This entry is either a list of 
ompartment pair lists, followed by their respe
tive di�usion 
oeÆ
ient, or asingle number that applies to all 
ompartment pairs, with all values given in 0.8e-5 
m2 se
�1. In the �rst
ase, for example:(diffusion-
oeffi
ient . (((1 2) 0.8e-5)((2 3) 0.8e-5)((
ore 3) 0.20e-5)))There is no assumed ordering of the 
ompartment pairs. In the se
ond 
ase, for example:(diffusion-
oeffi
ient . 0.8e-5)all di�usion between 
ompartments in this integrator type has a di�usion 
oeÆ
ient of 0.8e-5 
m2 se
�1. Thee�e
tive di�usion 
oeÆ
ients during a simulation are the original 
oeÆ
ients, as just des
ribed, muliplied bythe integrator's Q10 rate 
oeÆ
ient fa
tor �Q10 .15.4.2 :MULTI-SHELL Di�usion Distan
esDi�usion distan
es are determined by the DIFFUSION-DISTANCES entry in the CONC-INT-TYPE-DEF form.This entry is either a list of 
ompartment pair lists, followed by their respe
tive di�usion distan
e, or a singlenumber that applies to all 
ompartment pairs, with all values given in �m. In the �rst 
ase, for example:(diffusion-distan
es . (((1 3) (lambda (
int)(/ (element-volume 
int) (element-area 
int))))((2 3) 0.1)((
ore 3) 0.2)))There is no assumed ordering of the 
ompartment pairs. In the se
ond 
ase, for example:(diffusion-distan
es . 0.4)all di�usion between 
ompartments in this integrator type has a di�usion distan
e of 0.4�m.15.4.3 :MULTI-SHELL Interdigitated Juxtamembrane Shells and Di�usional AreasAs given in Equation 6, the di�usion between 
ompartments is 
al
ulated a

ording to the shared areabetween the 
ompartments and the di�usion 
onstant for ea
h pair of 
ompartments.When both shells 1 and 2 are de�ned to be juxtamembrane, they are said to be fun
tionally interdigitated.The idea is that the entire shell adja
ent to the membrane is divided up into many subregions, ea
h ofwhi
h belongs to one of two groups (
alled shell 1 or 2). Ea
h group is distinguished by a unique set of
hannels or synapses whi
h traverse the membrane over a given subregion. Thus, the 
on
entration in theset of subregions 
omprising shell 1 or 2 is evaluated over the total volume of the subregions, in
luding the
ontributions of all the 
hannels or synapses assigned to the appropriate shell. Di�usion between shell 1and 2 depends of an e�e
tive di�usion area whi
h 
on
eptually depends on the relative interdigitation ordispersion of the subregions.This interdigitation, or partitioning, is quanti�ed by the :INTERDIGITATION-COEFFICIENT of the 
on-
entration integrator type (1=�m), whi
h transforms the surfa
e area of the membrane, A, into an e�e
tivelength or border between the subregions. Thus, if the interdigitation 
oeÆ
ient is �1:2, then the e�e
tivedi�usional area A1:2 between shells 1 and 2 is given by:
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CoreFigure 3: Possible arrangements of 
on
entration integrator 
ompartments, whether intra or extra
ellular. Thejuxtamembrane shell may be divided into two 
ompartments, as seen in G - J, and spe
i�
 
hannels or synapsesmay be assigned to either of these 
ompartments. The layout used in the Working Model is shown in H. Core
ompartments have a 
onstant 
on
entration. Formulae for 
omputing the 
ompartment volumes depend on thelayout, as des
ribed in Table 3. As suggested in Table 3, the existen
e of shell 2, shell 3, and the 
ore is a fun
tionof the SHELL-2-P, SHELL-3-P, CORE-P, JUXTAMEMBRANE-SHELL-THICKNESS and INNER-SHELL-THICKNESS en-tries in the CONC-INT-TYPE-DEF (there is always a shell 1). However, for the :MULTI-SHELL integrator type
lass, a given 
ompartment is only fun
tional if the appropriate di�usion 
onstants are non-zero.



15 CONCENTRATION INTEGRATORS, PUMPS AND BUFFERS 101Di�usion Area Between Shells�1:2 Djuxta 1 and 2 1 and 3 (or Core) 2 and 3 (or Core)>=0 >0 �1:2 � Djuxta � A �S � A (1 - �S) � A<0 n/a A 0 An/a <=0 A 0 ATable 4: Cal
ulation of 
on
entration integrator inter-
ompartmental di�usion areas. �1:2 and Djuxta are givenby the INTERDIGITATION-COEFFICIENT (between shells 1 and 2) and JUXTAMEMBRANE-SHELL-THICKNESS (in�m) entries, respe
tively, in the CONC-INT-TYPE-DEF.A = 
ell element surfa
e area. \n/a" means not appli
able.Note that the last two 
ombinations of �1:2 and Djuxta pla
e shell 1 and 2 en-fa
e with respe
t to ea
h other(refer to layouts B, C, E and F in Figure 3). The di�usional areas between shell 1 and the 
ore and shell 2 andthe 
ore apply when there is no shell 3 (layouts D, E and I in Figure 3). The di�usional area between shell 3 andthe 
ore, when they both exist, is given by A (layouts F, and J in Figure 3).A1:2 = �1:2 �A�Djuxtawhere Djuxta is the :JUXTAMEMBRANE-SHELL-THICKNESS. The di�usion area between the juxtamembraneshell 1 and shell 3 is given by the produ
t of the :ALPHA-S slot of the 
on
entration integrator type andthe surfa
e area of the 
ell element. The di�usion area between the juxtamembrane shell 2 and shell 3 isgiven by the produ
t of 1 minus the value in the :ALPHA-S slot of the 
on
entration integrator type and thesurfa
e area of the 
ell element.The 
al
ulation of 
on
entration integrator inter-
ompartmental di�usion areas is summarized in Table 4.15.4.4 De�ning a :MULTI-SHELL Con
entration Integrator Type with CONC-INT-TYPE-DEFAn example of a :MULTI-SHELL type is given in the following CONC-INT-TYPE-DEF (taken from sr
/parameters/working-hp
.lisp,as des
ribed in Borg-Graham 1999):(
on
-int-type-def'(CA-IN-HPC(
lass . :MULTI-SHELL)(spe
ies . CA)(intra-p . T)(shell-2-p . T)(shell-3-p . T)(juxtamembrane-shell-thi
kness . 1.0)(inner-shell-thi
kness . 0.0)(alpha-s . 10.0e-5)(interdigitation-
oeffi
ient . 1.0)(diffusion-
oeffi
ient . (((1 2) 8.0e-6)((1 3) 0.0)((2 3) 8.0e-6)))(transmembrane-
on
entration . 2.0)(
ore-
on
 . 0.00105)(pump-type-params . ((CA-HPC-MM 2)))(resting-free-
on
 . 5.0e-5)(instantaneous-buffer-enabled . T)(instantaneous-buffer-ratio . 20.0)))This integrator type in
ludes instantaneous bu�ering (viz. the INSTANTANEOUS-BUFFER-ENABLEDand INSTANTANEOUS-BUFFER-RATIOentries) and a membrane pump (viz. the PUMP-TYPE-PARAMS entry). It has juxtamembrane shells 1 and 2and an inner shell 3 whose volume o

upies the remaining volume of the 
ell element after a

ounting for the
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knesses are in mi
rons. Note that this model has no 
ore: by 
onven-tion, for the impli
it 
al
ulation of 
ompartment volumes, when the value for INNER-SHELL-THICKNESS is0.0, then the inner 
ompartment o

upies the entire remaining 
ell element volume, as des
ribed in Table 3(see the volumes for shell 3 and the 
ore when Dinner = 0).The RESTING-FREE-CONC entry is in mM, and is the 
on
entration of free ion after taking into a

ountany instantaneous bu�er. The TRANSMEMBRANE-CONCENTRATION and the CORE-CONC are also in mM. Theselatter two 
on
entrations are total 
on
entrations of the ion; if there is no entry for RESTING-FREE-CONC,then the value for CORE-CONC is used, even though this is not intended to be the free 
on
entration. Theunits for the di�usion 
oeÆ
ients are in 
m2se
�1.The PUMP-TYPE-PARAMS entry is a list of pump types and the asso
iated integrator 
ompartments (Se
-tion 15.10). In this example, the pump type CA-HPC-MM is assigned to the shell 
ompartment 2.15.5 :GENERIC Con
entration IntegratorsCon
entration dynami
s for the :GENERIC 
lass of 
on
entration are de�ned by user-de�ned fun
tions, asdes
ribed in Se
tion 15.5.For the :GENERIC 
lass of 
on
entration integrator type the evolution of the ioni
 
on
entration(s)is governed by expli
it fun
tions, whose single argument is a 
on
entration itegrator, spe
i�ed in theCONC-INT-TYPE-DEF. The possible 
al
ulations performed by these fun
tions is re
e
ted by the keywordused in the CONC-INT-TYPE-DEF:� A C-N+1-FUNCTION, that returns the 
on
entration of shell 1 (double 
oat, in mM) of its 
on
entrationintegrator argument at the next time step tn+1. The result is then used to update the 
on
entrationin shell 1, thus: [X ℄1;n+1 = (C-N+1-FUNCTION CINT)� A DCDT-FUNCTION that returns the derivative of the 
on
entration of shell 1 (double 
oat, in mM/ms)of its 
on
entration integrator argument at the the midpoint between the 
urrent time tn and the nexttime step tn+1. The result is then used to update the 
on
entration in shell 1 by a simple forwardEuler integration, thus: d[X ℄1;n+1=2=dt = (DCDT-FUNCTION CINT)[X ℄1;n+1 = [X ℄1;n + (�t� d[X ℄1;n+1=2=dt� �Q10 )where �Q10 is the Q10 rate 
oeÆ
ient fa
tor.� A CONC-FUNCTION that spe
i�
ally updates the 
ompartment 
on
entrations of its 
on
entration inte-grator argmument for tn+1. Note that with this method there is no impli
it adjustement for Q10.For example (derived from Clay, 98; see sr
/parameters/
lay-98.lisp), one might have:(
on
-int-type-def`(
lay-98-k-ex(
lass . :generi
)(
-n+1-fun
tion . 
lay-98-k-n+1-extra)...)where the C-N+1-FUNCTION is de�ned as:(defun 
lay-98-k-n+1-extra (
int)(let* ((delta-t (*delta-t[n℄*))(total-
urrent (* 1.0e-6 (
on
-int-membrane-
urrent-
omponent 
int))) ; mA(total-
urrent-per-unit-area (/ total-
urrent (* 1.0e-8 (element-area 
int)))) ; mA/
m2(a

umulation-term (/ total-
urrent-per-unit-area *CLAY-98-FARADAY-PHI*)) ; M/ms(
on
-shell-extra (
on
-int-shell-1-free-
on
-n 
int)) ; mM(f-of-
n (/ 1 *CLAY-98-TAU*)))(/ (+ (* 1000 a

umulation-term) ;mM/ms
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on
-shell-extra(- (/ 1 delta-t)(/ 1 (* 2 *CLAY-98-TAU*))))(* *K-CONC-EXTRA*f-of-
n))(+ (/ 1 delta-t)(/ 1 (* 2 *CLAY-98-TAU*))))))Otherwise, we 
ould have (also taken from sr
/parameters/
lay-98.lisp),(
on
-int-type-def`(
lay-98-k-ex(
lass . :generi
)(d
dt-fun
tion . 
lay-98-dkdt-extra)...)where the DCDT-FUNCTION is de�ned as:(defun 
lay-98-dkdt-extra (
int)(let* ((total-
urrent (* 1.0e-6 (
on
-int-membrane-
urrent-
omponent 
int))) ; mA(total-
urrent-per-unit-area (/ total-
urrent (* 1.0e-8 (element-area 
int)))) ; mA/
m2(a

umulation-term (/ total-
urrent-per-unit-area *CLAY-98-FARADAY-PHI*)) ; M/ms(
on
-shell-extra (
on
-int-shell-1-free-
on
-n 
int)) ; mM(differen
e-
on
 (* 0.001 (- 
on
-shell-extra *K-CONC-EXTRA*)))) ; M(* 1000.0 ; M to mM(+ a

umulation-term ; M/ms(- (/ differen
e-
on
 *CLAY-98-TAU*)))))) ; M/msNote: with either the C-N+1-FUNCTION or DCDT-FUNCTION options, the evaluation of :GENERIC 
on
en-tration integrators impli
itly sets the 
on
entration of shell 1 after 
alling the user-spe
i�ed fun
tion justdes
ribed. Multiple 
ompartments may be de�ned for the :GENERIC 
lass, but the user-spe
i�ed fun
tionmust take 
are of updating the 
on
entrations in 
ompartments other than shell 1.15.6 Plotting Con
entration DataAny of the shell 
on
entrations may be plotted with the ENABLE-ELEMENT-PLOT fun
tion, where the optionalDATA-TYPE argument may be:1 -> Shell 12 -> Shell 23 -> Shell 3'TOTAL -> Average 
on
entration over the entirevolume of the asso
iated 
ell element [default℄'ALL -> Plot all of the above, as appropriatefor 
on
entration integrator typeIf 'TOTAL is spe
i�ed, the average 
on
entration of X is 
al
ulated with:V1 � [X ℄1 + V2 � [X ℄2 + V3 � [X ℄3 + V
ore � [X ℄
oreV1 + V2 + V3 + V
oreWhere Va and [X ℄a refer to the volume of shell a and the 
on
entration of [X ℄ in shell a, respe
tively. This"total" 
on
entration may be 
ompared to that measured by 
oures
ent probes in whi
h it is assumed thatthe 
on
entration of some spe
ies is integrated over the entire volume of a se
tion of neuron.When the global variable *PLOT-TOTAL-CONCENTRATIONS-SEPARATELY* is T, then a separate plottingwindow is generated for the average (or "total") 
on
entrations. This is useful when the magnitude of thejuxtamembrane shell 
on
entrations is mu
h larger than that of the 
on
entration averaged over the entire
ell-element volume.
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entration Integrator ShellsSpe
i�
 
hannels or synapses on a 
ell element may be assigned to shell 1 or 2 (that is. both may bejuxtamembrane). This assignment is de�ned a

ording to the :SHELL-1-PORES and :SHELL-2-PORES slotsof ea
h 
on
entration integrator. These slots in turn are set automati
ally when 
hannels or synapses are
reated, a

ording to the :CONC-INT-TYPE-PARAMS slots of the appropriate 
hannel or synapse types (seealso Se
tions 11 and s:synapse). The list in these slots is set for ea
h ion that passes through the 
hannel orsynapse type, and in
ludes an entry for a 
on
entration integrator type, for the shell (1 and/or 2) and theproportion of the 
urrent asso
iated with the shell, e.g.:(CHANNEL-TYPE-DEF'(FOO...(
on
-int-type-params . '((CA-INTRA (1 0.7) (2 0.24)) (K-EXTRA (1 1)))...)Thus, for this example, the installation of every 
hannel of type FOO in a soma or segment will automati
ally
reate a CA-INTRA and a K-EXTRA 
on
entration integrator. The :SHELL-1-PORES slot of the CA-INTRAintegrator will in
lude (<FOO 
hannel> 0.7) (it 
ould also have other 
hannels or synapses assigned to it),and likewise :SHELL-2-PORES slot will in
lude (<FOO 
hannel> 0.24). Finally, the :SHELL-1-PORES slot ofthe K-EXTRA integrator will in
lude (<FOO 
hannel> 1.0). Again, this entire pro
ess (integrator 
reationand assignment to 
hannel or synapse) is automati
.15.8 Con
entration Integrators and Con
entration Parti
lesWhen a 
on
entration integrator is assigned to a node that already has 
on
entration parti
le(s) asso
iatedwith it, then that integrator is assigned to all the previously de�ned 
on
entration parti
les. If a 
on
entrationparti
le is at a node without a 
on
entration integrator, then the 
on
entration used for evaluating thatparti
le is given by the global variable *X-CONC-INTRA*, where X refers to the appropriate ioni
 spe
ies(e.g. *CA-CONC-INTRA*, *K-CONC-INTRA*, et
.). Note that normally these variables are 
onstant during asimulation.15.9 Con
entration Integrator Channel or Synapse 'CONC-INT-DELTA ParameterAn additional parameter Æ, assigned to spe
i�
 pore elements (
hannels or synapses) is a s
aling 
oeÆ-
ient (less than 1) for the 
urrent integrated by asso
iated integrators. This parameter is also dis
ussed inSe
tion 11.This parameter may be appropriate when a model pla
es all 
hannels (or synapses) at some single position(typi
ally the soma) even if those 
hannels are in reality distributed throughout the dendriti
 tree. Su
h adistribution may give a reasonable �rst estimation as to the ele
tri
al image (more so under 
urrent 
lamp)from the soma of the 
hannel behaviour. However, the 
on
entration pro�le eli
ited by the \unnatural"
on
entration of 
hannels 
ould be overestimated, all other fa
tors being equal (e.g. distribution of bu�erand pump me
hanisms). As a �rst approximation, Æ is estimated by the ratio of the a
tual 
ondu
tan
e ofa 
hannel at the lo
ation in the model, divided by the total 
ondu
tan
e of the 
hannel for the entire 
ell.For example, in the Working Model:* (element-parameter "HPC-soma-CA-T-GEN" '
on
-int-delta)0.34This parameter may be spe
i�ed in a CHANNEL-TYPE-DEF (Se
tion 11), or assigned after 
hannels are 
reated,for example:(loop for 
h in (
hannels) when (element-of-ion-type-p 
h '
a)do (element-parameter 
h '
on
-int-delta 0.34))(set-
on
-integrators-parameters))The �nal 
all to SET-CONC-INTEGRATORS-PARAMETERS makes sure that the appropriate 
on
entration inte-grators are setup properly. This parameter is also dis
ussed in Se
tion 11.
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lasses of pump types: :MM (Mi
haelis-Menton), :FIRST-ORDER, :FIRST-ORDER-TAU-V(where the tau depends on voltage of asso
iated 
ell element), and :GENERIC. Ea
h type is de�ned with thePUMP-TYPE-DEF ma
ro, dis
ussed in Se
tion 9. At present only the :MM and :GENERIC 
lasses of pump arewell tested.Note that pump types and pumps are typi
ally 
reated automati
ally, when a 
on
entration integratortype or asso
iated integrators are 
reated whose parameter library de�nitions referen
e a parti
ular pumptype. Furthermore, pumps must be expli
itly asso
iated with spe
i�
 
ompartments in CONC-INT-TYPE-DEFforms, for example as shown previously in the (PUMP-TYPE-PARAMS . ((CA-HPC-MM 2))) entry in the de�-nition of the CA-IN-HPC type.Thus, pump types generally have an ioni
 :SPECIES, but this is used mainly for do
umentation sin
e the
on
entration referen
es are done via the asso
iated 
on
entration integrators.Pumps are initialized a

ording to the resting free 
on
entration in the asso
iated 
on
entration integrator
ompartment. This value is used even if 
on
entation integrator values are initialized with *CONC-INT-INITIALIZATIONS*(see Se
tion 24).15.10.1 Mi
haelis-Menton Pump TypesThe equation governing the ioni
 
ux of a Mi
haelis-Menton pump type is:JX = Vmax [X ℄Kd + [X ℄ � Jleakwhere JX is the removal rate of X per unit area, Vmax is the maximum 
ux rate per unit area, [X ℄ is the
on
entration of X is the 
omparment asso
iated with the pump, Kd is the half-maximal [X℄, and Jleak
ompensates for the resting pump rate. For example, as des
ribed in sr
/parameters/pumps.lisp (takenfrom Ja�e et al., 1994):(pump-type-def`(CA-JAFFE-94(
lass . :MM)(v-max . 6.0e-11) ; millimole ms^-1 
m^-2(kd . 0.01) ; millimolar(spe
ies . CA)))15.10.2 First Order, Voltage-Dependent � Pump Types(To be 
ompleted)....As des
ribed in sr
/parameters/pumps.lisp (taken from Yamada et al., 1989):(pump-type-def`(CA-YAMADA-89(spe
ies . 
a)(
lass . :first-order-tau-v) ; tau depends on voltage of asso
iated 
ell element(equilibrium-
on
 . 50.0) ; mM(tau-fun
tion . ,#'(lambda (voltage) (* 17.7 (exp (/ voltage 35.0)))))))The TAU-FUNCTION entry must have a single voltage argument (in mV),and return a time 
onstant value inmillise
onds.15.10.3 Generi
 Pump TypesPump membrane 
ux of X is determined by a PUMP-FUNCTION entry in the PUMP-TYPE-DEF, whi
h takesan instan
e of a pump and the 
on
entration (in mM) of the 
ompartment asso
iated with the pump, andreturns the 
ux of X in millimole/millise
ond.For example (derived from Clay, 98; see sr
/parameters/
lay-98.lisp):



15 CONCENTRATION INTEGRATORS, PUMPS AND BUFFERS 106Pump Compartment :SHELL-2-P Pump Membrane AreaShell 1 T �S �ANIL AShell 2 T (1� �S)�ATable 5: Cal
ulation of pump membrane area. Pumps, whi
h are only asso
iated with spe
i�
 juxtamembrane
on
entration integrator 
ompartments, are parameterized by the membrane area of those 
ompartment.(pump-type-def'(k-
lay-98(spe
ies . k)(
lass . :generi
)(pump-fun
tion . 
lay-98-pump)))where the PUMP-FUNCTION is de�ned with:(defun 
lay-98-pump (pump 
on
-shell-extra)(let* ((differen
e-
on
 (* 0.001 (- 
on
-shell-extra *k-
on
-extra*))) ; M(result(* 1000.0 ; mM/M(* *
lay-98-gamma* ; 1/ms(/ differen
e-
on
 ; M(expt (+ 1 (/ differen
e-
on
 *
lay-98-Kd*)) 3))))))(* 0.001 ; L/mL(pump-
on
-int-
ompartment-volume pump) ; mLresult))) ; millimole / L ms15.10.4 Pump Membrane Areas For Con
entration IntegratorsThe 
al
ulation of a pump's membrane area depends on its asso
iated 
on
entration integrator. This 
al
u-lation may be done expli
itely as des
ribed in Se
tion 15.3.3, or impli
itely, as summarized in Table 5.15.11 Instantaneous Bu�ersInstantaneous bu�ers for a 
on
entration integrator type are de�ned in terms of bu�er ratios, given by anINSTANTANEOUS-BUFFER-RATIO entry in the CONC-INT-TYPE-DEF form. This entry 
an either be a list of
ompartment names followed by bu�er ratio, or a single number whi
h implies that all 
ompartments havean instantaneous bu�er, whose ratio is given by the number. In the former 
ase, for example:(INSTANTANEOUS-BUFFER-RATIO . `((1 20.0) (3 100.0)))Thus, the value given is the dimensionless ratio of [X ℄bound=[X ℄ for a given 
ompartment. Shells notin
luded in this list, or with a ratio of NIL, are assumed not to have an instantaneous bu�er. TheINSTANTANEOUS-BUFFER-ENABLED entry in the CONC-INT-TYPE-DEF enables the instantaneous shell bu�ers.15.12 Other Bu�ersNot available yet.15.13 Con
entration ClampA 
onvenient way to impose a 
on
entration 
lamp (and turn it o�) is with the fun
tions
on
entration-
lamp element &optional 
on
entration [Fun
tion℄
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on
entration-
lamp-o� element &optional 
on
entration [Fun
tion℄CONCENTRATION-CLAMP turns o� all 
on
entration integrators asso
iated with ELEMENT. If CONCENTRA-TION is a number (mM, default NIL), then this sets the steady-state value of the integrators to this value.Returns the steady-state 
on
entration(s). CONCENTRATION-CLAMP-OFF is the same, ex
ept that it turns allthe appropriate 
on
entration integrators on.15.14 Fun
tions of Interest
on
-int-shell-1-free-
on
-n 
int [Fun
tion℄
on
-int-shell-1-free-
on
-n+1 
int [Fun
tion℄
on
-int-shell-2-free-
on
-n 
int [Fun
tion℄
on
-int-shell-2-free-
on
-n+1 
int [Fun
tion℄
on
-int-shell-3-free-
on
-n 
int [Fun
tion℄
on
-int-shell-3-free-
on
-n+1 
int [Fun
tion℄These return the 
on
entration (mM) of free ion in the appropriate shell of CINT at time tn or tn+1, asindi
ated by the fun
tion name.
on
-int-
ore-free-
on
 
int [Fun
tion℄Con
entration (mM) of free ion in 
ore 
ompartment of CINT.
on
-int-membrane-
urrent-
omponent 
int &optional (shell 1) [Fun
tion℄Returns the 
on
entration derivative [mM/ms℄, for non :GENERIC integrators, or the 
urrent [nA℄ for:GENERIC integrators, for the 
ompartment SHELL of CINT that is due to that 
ompartment's asso
i-ated :SHELL-PORES and pumps. The 
oeÆ
ient :BETA-CURRENT-sh, spe
i�
 for a given CINT, 
onverts
hannel 
urrent (nA) to d[x℄/dt (mM/ms); :BETA-CURRENT-sh = 1 for :GENERIC integrators.
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 TreesAssuming a de�ned bran
hing stru
ture, various algorithms may be employed to transform anatomi
al
oordinate data into a 
ompartmental model. The simplest approa
h, of 
ourse, is a one-to-one mapping,where there is one 
ompartment (dendriti
 segment) for ea
h anatomi
al lo
ation, with the lo
ation anddimensions of that 
ompartment taken as some fun
tion of the asso
iated anatomi
al point and either oneor two adja
ent points.For most pra
ti
al simulations this produ
es an over-detailed representation sin
e typi
al anatomi
alstudies in
lude on the order of thousands of dendriti
 lo
ations and asso
iated diameters. Here we des
ribeone method for redu
ing su
h a des
ription into fewer 
ompartments, with the minimum number given bytwi
e the number of bran
h points in the dendriti
 tree, plus one. The motivation for this method is topreserve both the 3-dimensional shape of the neuron and the ele
trotoni
 properties of the tree as best aspossible.The following pro
edure 
an be evoked from the (Main Menu) "Edit 
ir
uit elements" -> "Exam-ine/modify distribution of ele
trotoni
 lengths" option. Note that a histogram plot of the distributionof ele
trotoni
 lengths in the loaded 
ells is also available.16.1 Tree Redu
tion AlgorithmThe redu
tion is iterative and operates on a pair of segments at a time. Starting from the soma and workingdown ea
h proximal trunk, two 
onse
utive segments, 
all them A and B, are 
ombined into one if there isno other segment 
ommon to both (i.e. the 
onne
tion is not a bran
h point) and if the ele
trotoni
 lengthof the 
andidate repla
ement segment is less than that set by some a-priori 
riteria, i.e. a parameter Lmax,set by the global variable:*maximum-ele
trotoni
-length* 0.25 [Variable℄The pro
ess 
ontinues distally - if A and B were 
ombined in the previous step into a segment AB, the nextpair 
onsists of AB and the segment distal to the original segment B (
all it C). Otherwise, the next pairto be 
onsidered is B and C.A more stringent requirement is that the ele
trotoni
 length of the repla
ement segment be less than*MAXIMUM-ELECTROTONIC-LENGTH*. This is more stringent sin
e the sum of the 
onse
utive segments' ele
-trotoni
 length will underestimate the ele
trotoni
 length of the repla
ement segment 
onstru
ted with the
riteria listed below. The tighter test is 
ontrolled by the global variable:*use-stri
t-lambda-
riterium* t [Variable℄The disadvantage is an in
rease in pro
essing time. The parameters of the repla
ement segment are deriveda

ording to the following 
onstraints:1. The total axial series resistivity of the two original segments is 
onserved.2. The total membrane impedan
e (area) of the two original segments is 
onserved.3. The end points of the new segment 
orrespond to the non-
ommon end points of the original twosegments.In order to meet these 
onstraints an additional parameter for ea
h segment must be introdu
ed, whi
h weare 
hoosing to be a 
oeÆ
ient, a, of the 
ytoplasmi
 resistivity that is used when determining the segmentintra
ellular axial resistan
e (the default value for a is 1). This 
oeÆ
ient and the dimensions of the newsegment are 
al
ulated as follows. Let li be the segment length, di the segment diameter, and ai the 
oeÆ
ientfor the segment axial resistivity, where i is p, d, or n for the proximal, distal, or new segment, respe
tively.As stated above, the length of the new segment, ln is �xed by the far endpoints of the original proximaland distal segments. Conservation of membrane area (that is, 
onservation of membrane 
apa
itan
e andresistan
e) gives:



16 CONSOLIDATING DENDRITIC TREES 109dn = (lp � dp) + (ld � dd)lnConservation of axial resistan
e gives:an = (lp � ap)=d2p + (ld � ad)=d2dln=d2nThis te
hnique yields a new segment whose 
able parameters are similar to the 
on
atenation of the twoparents. However, the a
tual proximal input impedan
e of the new segment will always be greater than orequal to the input impedan
e of the former segment pair, sin
e the membrane impedan
e is now fartheraway ele
tri
ally from the proximal end of the new segment, relative to the membrane impedan
es of theoriginal pair. Thus, the input impedan
e of a transformed (
onsolidated) tree will always be greater than orequal to the original tree, and the di�eren
e in the impedan
es will be greater the larger the 
onsolidation(equivalently, the larger the Lmax). As one example:* (surf)** Surf-Hippo: The MIT CBIP Neuron Simulator (Version 2.2) **Reading in 
ir
uit j43d...; Loading #p"/usr/lo
al/surf-hippo/anatomy/j43d.spar
f".Destroying zero length segment 4-3-56Destroying zero length segment 11-1-1Destroying zero length segment 11-2-1Lo
ating segments...76 bran
h points and 3369 segments pro
essed.Sunday, 10/30/94 03:38:40 am ESTSimulation 'j43d-619512' [File: /usr/lo
al/surf-hippo/anatomy/j43d.spar
f℄1 
ell type, 1 
ell, with 3370 nodes. Temperature 27.0 degrees(C)There is 1 soma, 1 
urrent sour
e, and 3369 segments.Cell-type V1-pyramidal:Rm 40000.0, Rm-sm 40000.0 (ohm-
m2)Soma shunt 1.0e+30 ohms, Ra 200.0 ohm-
m, Cm-sm 1.0, Cm-den 1.0 (uF/
m2)E-soma-leak -70.0 mV, E-dendrite-leak -70.0 mVCells of type V1-pyramidal are:j43d (soma � [0.0 0.0 0.0℄)Max G-in/Min R-in = 1.34e-2 uS/7.46e+1 MohmsSoma passive R-in = 2.75e+3 MohmsDendriti
 tree passive R-in (a
tual model) = 9.80e+1 Mohms(
able model) = 9.79e+1 MohmsPassive total R-in from soma (a
tual model) = 9.47e+1 Mohms(
able model) = 9.45e+1 MohmsLo
ating segments...76 bran
h points and 1427 segments pro
essed.Sunday, 10/30/94 03:44:10 am ESTSimulation 'j43d-619545' [File: /usr/lo
al/surf-hippo/anatomy/j43d.spar
f℄Trees have been 
onsolidated with a maximum ele
trotoni
 length of 0.3
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ell type, 1 
ell, with 1428 nodes. Temperature 27.0 degrees(C)There is 1 soma, 1 
urrent sour
e, and 1427 segments.Cell-type V1-pyramidal:Rm 40000.0, Rm-sm 40000.0 (ohm-
m2)Soma shunt 1.0e+30 ohms, Ra 200.0 ohm-
m, Cm-sm 1.0, Cm-den 1.0 (uF/
m2)E-soma-leak -70.0 mV, E-dendrite-leak -70.0 mVCells of type V1-pyramidal are:j43d (soma � [0.0 0.0 0.0℄)Max G-in/Min R-in = 1.34e-2 uS/7.46e+1 MohmsSoma passive R-in = 2.75e+3 MohmsDendriti
 tree passive R-in (a
tual model) = 9.84e+1 Mohms(
able model) = 9.79e+1 MohmsPassive total R-in from soma (a
tual model) = 9.50e+1 Mohms(
able model) = 9.45e+1 MohmsThis algorithm may be run from a menu with the fun
tion:
onsolidate-
ells-tree [Fun
tion℄See also hints mis
.do
 for Saving Cell Geometries.16.2 Naming Consolidated SegmentsThe new name of a repla
ement segment is derived from the original segment names by the fun
tionCREATE-CONSOLIDATED-SEGMENT-NAME as follows:When neither of the two names 
ontain the 
hara
ter "^", then the new name is the 
on
atenation ofthe original names, separated by "^", for example:"19" "2-34" --> "19^2-34""foo" "bar" --> "foo^bar"When either name 
ontains a "^", the new name is 
onstru
ted from the 
hara
ters to the left of the �rst "^"in the �rst (proximal) segment name, and the 
hara
ters to the right of the last "^" in the �rst (proximal)segment name, separated by "^", for example:"foo^bar" "bar2" -> "foo^bar2""1-2-43^1-2-48" "1-2-49" -> "1-2-43^1-2-49""1-2-43^4-3-48" "2-1-9^5-9-54" -> "1-2-43^5-9-54"The motivation is that the new name re
e
ts the names of both the distal and proximal segments that
ontribute to it.



17 SCRIPTS - SEARCHING PARAMETER SPACES 11117 S
ripts - Sear
hing Parameter Spa
esSee also Se
tion 3.17.1 Setting Up a Series of SimulationsFor running a series of simulations, for example to explore some parameter spa
e, it is useful to enter alooping form dire
tly to the Lisp interpreter. The usual option for loading/modifying/running 
ir
uits is:� Load in the 
ir
uit� Run loop with appropriate fun
tion 
alls to modify the 
ir
uit properties.� Call GOFERIT in the inner loop to run the simulation.For example, see surf-hippo/
ir
uits/demos/parameter-loop.lisp.17.2 Fun
tions to Modify Element ParametersIn general, any slot of an element stru
ture may be SETF'd as needed - the sr
/sys/stru
tures.lisp �leholds all the element stru
tures and do
umentation of ea
h slot. However, it is usually more 
onvenientto use various fun
tions spe
ialized to modify slots, whi
h in parti
ular may take 
are of some non-obviousbookeeping. It is also strongly re
ommended that stru
ture slots not be referen
ed dire
tly in your 
ode,sin
e this makes upward 
ompatibility of the 
ode to later revisions of Surf-Hippo more problemati
. Someof the fun
tions that handle this parameter adjustment in
lude:iv-type-parameter element param &optional (value nil value�supplied�p) (update t) [Fun
tion℄set-element-absolute-iv-relation-ref element iv�referen
e [Fun
tion℄des
ribed in Se
tion 10, and CELL-TYPE-PARAMETER, des
ribed in Se
tion 7.1.17.3 Changing Soma or Segment DimensionsIf the dimensions of a soma or a segment are 
hanged, then the fun
tion:set-element-membrane-parameters element &optional ignore�membrane�elements [Fun
tion℄where ELEMENT is either the soma or segment, will update the appropriate membrane elements to re
e
tthe new dimensions, but not the geometry of the 
ir
uit. Note that if the dimensions of a soma is 
hangedwith the menus, then this is update is done automati
ally.A 
omplete revision of all 
ir
uit properties, in
luding 
ell geometry, is done by 
alling:(pro
ess-
ir
uit-stru
ture T)It is not usually ne
essary to 
all this fun
tion expli
itly.17.4 Suppressing Plot OutputFor multiple runs for whi
h either some on-line analysis is the goal, or where data is to be saved for ea
hrun, then it may be useful to suppress plot output by setting the global variable *PLOT-STANDARD-WINDOWS*to NIL. Note that this will not prevent the spe
i�ed plotted variables from being a

umulated (whi
h isne
essary for any output); this will only prevent the a
tual plot generation.



17 SCRIPTS - SEARCHING PARAMETER SPACES 11217.5 Plot Elements UtilitiesInformation about whi
h elements to plot and the 
orre
t data type are kept in a set of string list globalvariables (e.g. *PLOT-NODES*, *PLOT-CHANNEL-CONDUCTANCES*), whi
h 
ontain element names. These listsmay be edited expli
itly, or (better) you may use the ENABLE-ELEMENT-PLOT fun
tion:enable-element-plot element &optional data�type model�type [Fun
tion℄There is alsodisable-element-plot element &optional data�type model�type [Fun
tion℄These fun
tions are des
ribed in Se
tion 19 The fun
tion:plot-all-somas [Fun
tion℄is 
onvenient for plotting all the soma voltages in the 
ir
uit. The de�nition of this fun
tion is simply:(defun plot-all-somas ()(enable-element-plot (somas)))17.6 ExamplesHere is a simple loop that delivers a series of 
urrent steps (start time 50.0 ms, stop time 1050.0 ms), andplots the results to distin
t windows, ea
h of whi
h will show a 
omment indi
ating the level of the 
urrent
lamp. This loop assumes that a 
ir
uit is loaded with (at least) one 
urrent sour
e (the last 
reated 
urrentsour
e is referen
ed by the variable *ISOURCE*). The lo
al binding (within the LET form) of the variables*CREATE-NEW-SIMULATION-PLOTS* and *SIMULATION-PLOT-WINDOW-COMMENT* insure that later simulationswill not inherit values for these variables during the loop.(loop for 
urrent from 0.0 to 3.0 by 0.25 do ; Current is in nA.(pulse-list *isour
e* (list 50.0 1050.0 
urrent))(let ((*CREATE-NEW-SIMULATION-PLOTS* t)(*simulation-plot-window-
omment* (format nil "~anA step" 
urrent)))(gotimed)))Note that the pulse list argument to PULSE-LIST is 
onstru
ted with the LIST fun
tion, sin
e the value ofthe 
urrent is given by the lo
al variable CURRENT. If that value was a 
onstant, then the shorter quoted listform 
ould have been used (e.g. '((50.0 1050.0 1.2)). CC-STEPS is a fun
tion whi
h does more or less thesame thing as the loop above:

-steps start�
urrent stop�
urrentstep &key (isour
e *isour
e*) (
urrent�start�time 10.0) (
urrent�stop�time(* 0.9 *user�stop�time*)) individual�plots 
omment (extra�
omment "")(overlay�plots t) (show�plot�windows t) timeit (in
lude�
omment t) [Fun
tion℄The START-CURRENT, STOP-CURRENT and STEP arguments are in nanoamps, and the time argumentsare in millise
onds.17.7 Elapsed Time Window, GC Messages, or NotDuring a simulation a timer window will appear. However, if you are running a lot of rapid simulations, itis important to disable this indi
ator by:(setq *show-time-remaining* nil)Otherwise, the frequent refreshing of this window may hangs things up.If you want a re
ord of the GC statisti
s intermingled with other program output in the LISP interpreterwindow, then set both *PRINT-OUT-GC* and *GC-ANNOUNCE-TEXT* to T. See also Se
tions 27.9 and 27.10.



18 ELEMENT DATA 11318 Element DataThis se
tion des
ribes the formatting and manipulation of data generated by Surf-Hippo simulations. Seealso Se
tions 19, 22, 20, 20.6 and 23.8.18.1 Format of Element Data and Time ListsData - voltages, 
urrents, 
ondu
tan
es, parti
le states, 
on
entrations, et
. - des
ribing various aspe
ts ofthe 
ir
uit 
omponents may be saved during the simulation for later plotting or analysis, but only if theplotting is enabled for a given element (and its appropriate data type).The format for element data is a list of single-
oat numbers. The asso
iated times for these numbersis given in the list *SIM-PLOT-TIME-LIST*, a global variable whi
h holds the plotted time values from thelast simulation, in 
orre
t order. Note that for eÆ
ien
y data lists that are a
tually stored in the 
ir
uitelement stru
tures are in reverse time order. However, in the usual 
ase fun
tions based on the ELEMENT-DATAfun
tion (see below) are used for a

essing element data, whi
h returns the stored data in the 
orre
t timeorder.Simulation data is saved onto the appropriate lists (in
luding the *SIM-PLOT-TIME-LIST* list) every*SAVE-DATA-STEP* time steps during the run. The default value for this global variable is 2, i.e. data issaved every other time step).For variable time step simulations, referen
ing the 
urrent value of *SIM-PLOT-TIME-LIST* is obviouslyessential for interpreting the element data lists properly. For �xed time step simulations, where the timestep is given by *USER-STEP* (in millise
onds), the element data time base 
an be re
onstru
ted using boththe value of *USER-STEP* and *SAVE-DATA-STEP*.In general, to get the time points asso
iated with the 
urrent simulation data, whether the simulation is�nished or not, use:
urrent-sim-plot-time-list [Fun
tion℄Thus, the list of time points returned by this fun
tion will always be the ones asso
iated with the result ofELEMENT-DATA (see below).It is often important to analyze simulation data on a spe
i�
 �xed sampling grid. The basi
 fun
tion forresampling element data (espe
ially if a variable time step was used) is ELEMENT-DATA-DTED (see below).18.2 Basi
 Handling of Plot DataThe basi
 fun
tions for 
ontrolling and a

essing the 
olle
tion of simulation data are:enable-element-plot element &optional data�type model�type [Fun
tion℄disable-element-plot element &optional data�type model�type [Fun
tion℄element-data element &optional data�type model�type state�index [Fun
tion℄The �rst two fun
tions add (or remove) the appropriate element name or names to the appropriate plottinglist. ELEMENT-DATA returns the plot data list (in 
orre
t time order from the last simulation, a

ording tothe list of times in *SIM-PLOT-TIME-LIST* - see below). These fun
tions operate on elements in ELEMENT,whi
h 
an be a list of element names or elements, a single instan
e of either or NIL, whi
h generates a sele
tionmenu. TYPE applies to the element type. DATA-TYPE is used when there is more than one type of plotdata for a given sort of element (e.g. 
urrent and 
ondu
tan
e for a 
hannel or synapse). If DATA-TYPE isnot supplied, then the default type of plotted data for a given element type is used. Optionsf are shown inTable 6.For markov state data, the optional STATE-INDEX integer argument must be supplied. If the DATA-TYPEor TYPE arguments are in
luded, then they are used for all members of the ELEMENT arg. If ELEMENT



18 ELEMENT DATA 114Element Type Default Data Type Other Data TypesSOMA 'VOLTAGE 'DVDT'DENDRITE-CURRENTSEGMENT 'VOLTAGE 'DVDTAXON 'VOLTAGECHANNEL, SYNAPSE 'CURRENT 'REVERSAL-POTENTIAL'CONDUCTANCEISOURCE, VSOURCE 'CURRENTPARTICLE, CONC-PARTICLE 'STATE 'MARKOV-STATESCONC-INT 'TOTAL 1 (shell 1)2 (shell 2)3 (shell 3)EXTRACELLULAR-ELECTRODE 'FIELD-POTENTIALBUFFER 'CONCENTRATIONPUMP 'CURRENTTable 6: Element data types.does not refer to a 
ir
uit element, if the DATA-TYPE is in
onsistent with the referen
ed element, or if thedata was not stored in the last simulation (i.e. was not earmarked for plotting), then ELEMENT-DATA returnsNIL.For example,* (ENABLE-ELEMENT-PLOT *soma*)NILor * (element-data "Hippo-soma")'(-70.0 -70.0 -70.0 -69.8123 -69.123 ...)ENABLE-ELEMENT-PLOT also sets the enable plot 
ag for the appropriate 
lass of plotted data.element-data-dted element &optional (dt 1.0) data�type model�type (time�base(
urrent�sim�plot�time�list)) state�index [Fun
tion℄Given an element or elements in ELEMENT or element type TYPE, returns a plot data list (or lists formore than one element) of type DATA-TYPE [defaults as is ELEMENT-DATA℄ sampled on an even time baseas given by DT [millise
onds℄. The time base for the original data is taken from TIME-BASE [default is thesimulation time base list given by *SIM-PLOT-TIME-LIST*℄; if a number, then the time base for the originaldata is taken from an even time grid with step TIME-BASE.A string of segments along a path 
an be plotted by using:plot-segments-to-soma element &optional (segment�skip 0) 
lear��rst [Fun
tion℄Enables plotting on a separate window all the segments on the path from the ELEMENT to the soma,skipping path segments by SEGMENT-SKIP [default 0℄. If CLEAR-FIRST [default NIL℄ is T, then anysegments previously in
luding in su
h a plot are 
leared �rst.18.3 On-Line Analysis - Creation Of Analysis Results File For SimulationsAt the end of a simulation Surf-Hippo 
an run an analysis of any data that was saved during the simulation,whi
h in turn is determined by the variables referen
ed in the names stored in the various plot and analysislists. In the latter 
ase, the appropriate fun
tions to add/delete a node referen
e are:



18 ELEMENT DATA 115enable-element-save-data element &optional data�type model�type [Fun
tion℄disable-element-save-data element &optional data�type (abort�disable�if�plotted t)model�type [Fun
tion℄This automati
 analysis is performed from the fun
tion PRINT-ANALYSIS, whi
h is 
alled at the end of thesimulation by the fun
tion SIM-OUTPUT. The following dis
ussion of PRINT-ANALYSIS follows the versionof this fun
tion as supplied with Surf-Hippo. For other types of analysis, it is straightforward to modifyPRINT-ANALYSIS, and load your own de�nition:(defun PRINT-ANALYSIS ()...)after Surf-Hippo is loaded (it is probably a good idea not to edit the original sour
e �le, and rather loadyour own �le that 
ontains the new de�nition after Surf-Hippo is loaded). For the supplied de�nition ofPRINT-ANALYSIS, the analyzed data is taken from all plotted variables, and the element names spe
i�ed in*ANALYSIS-NODES* The nodes listed in this variable will not be plotted.Again, this variable is a list of element names, e.g. the names of segments or somas.The variable *PRINT-ANALYSIS* determines whether the plotted data is analyzed by the simulatorwhen the simulation is 
omplete by the fun
tion PRINT-ANALYSIS. The results of the data analysis atthis level 
an be either printed out to the Lisp window (when *PRINT-OUT-TO-LISP* is T), added tothe information �le (when *SAVE-SIMULATION-INFO* is T), printed out to the Information Window (when*PRINT-OUT-TO-INFO-WINDOW* is T), and/or saved to a RESULTS FILENAME.results �le (when *DUMP-ANALYSIS-TO-FILE*and *PRINT-OUT-TO-LISP* are T). The RESULTS FILENAME is made up of the data dire
tory and thevalue of the string variable *SESSION-NAME*, if *SESSION-NAME* is not the NULL string, or *SIMULATION-NAME*,if *SESSION-NAME* the NULL string.An example of the results form that is written (appended) to the results �le is (for a simulation namedJ43DSBRANCH2-848441):(push'(J43DSBRANCH2-848441(DISTAL-PROXIMAL BRANCH-11-5 0.25)(((NODE-11-30-54 (MAX . -57.37003) (MIN .-74.23389))(NODE-11-30-1 (MAX . -61.630474) (MIN . -73.27865))(NODE-11-30-15 (MAX . -59.089767) (MIN . -73.78816))(NODE-J43D-SOMA (MAX . -67.22821) (MIN . -71.92825)))((NODE-11-30-54 (AVERAGE . 1.9533609) (BASE . -70.0))(NODE-11-30-1 (AVERAGE . 0.5855975) (BASE . -70.0))(NODE-11-30-15 (AVERAGE . 1.0426667) (BASE . -70.0))(NODE-J43D-SOMA (AVERAGE . 0.17151265) (BASE . -70.0)))))*ar
hive-session-results*)The results �le will thus 
ontain a form like the above for ea
h simulation that 
omprises the 
urrent session.When this �le is later loaded into the Lisp, then the variable *ARCHIVE-SESSION-RESULTS* 
an be pro
essedas ne
essary.As determined by PRINT-ANALYSIS, the basi
 stru
ture of the list PUSHed onto the variable *ARCHIVE-SESSION-RESULTS*is:(LIST *SIMULATION-NAME* *SIMULATION-RESULTS-ADDENDUM* RESULTS)where the results form is built by 
onse
utive PUSHs of the data returned by fun
tions 
alled by PRINT-ANALYSIS,for example (see INTEGRATE-PLOT-DATA to see the format of what this fun
tion returns):(push (INTEGRATE-plot-DATA(retrieve-plot-data (list (list *analysis-nodes* `voltage)))*analysis-nodes* *x-integrate-min* *x-integrate-max*)results)



18 ELEMENT DATA 116The variable *SIMULATION-RESULTS-ADDENDUM* should be set to something whi
h 
an fa
ilitate later pars-ing of the entries in *ARCHIVE-SESSION-RESULTS*, e.g. some parameters whi
h distinguish the individualsimulation. For example, in the example above:(setq *SIMULATION-RESULTS-ADDENDUM* '(DISTAL-PROXIMAL BRANCH-11-5 0.25))In the supplied version, PRINT-ANALYSIS follows the value of various global 
ags, in
luding *PRINT-LINEAR-ANALYSIS*(whi
h enables the evaluation of INTEGRATE-PLOT-DATA) and *PRINT-NONLINEAR-ANALYSIS* (whi
h en-ables the evaluation of MAX-MIN-PLOT-DATA). The result lists returned by INTEGRATE-PLOT-DATA andMAX-MIN-PLOT-DATAare 
olle
ted in PRINT-ANALYSIS and then written to the results �le when *DUMP-ANALYSIS-TO-FILE*is T. Again, these formats are determined by the de�nition of the PRINT-ANALYSIS fun
tion, and 
an be
hanged as desired.18.4 Raster PlotsThe fun
tion:raster-plots &key (start *user�start�time*) (stop *user�stop�time*) width heighttitle�post�x win title font (event�width *default�raster�event�width*)(event�height *default�raster�event�height*) (times�in�fnst) (max�tra
es�per�plot 20) (raster�spa
ing *default�raster�spa
ing*)event�data�lists spiking�elementsevent�elements (only�event�generators t) (only�elements�with�a
tivity*plot�only�elements�with�a
tivity*)event�element�labels �xed�top�gap �xed�bottom�gap �xed�right�gap�xed�left�gap (in
lude�labels t) default�label (raster�sour
e�label "")
[Fun
tion℄

plots event times of ea
h of the EVENT-ELEMENTS (when ONLY-EVENT-GENERATORS is nil) or theoriginal times of the event generators for the EVENT-ELEMENTS (ONLY-EVENT-GENERATORS T, thedefault). If not supplied, EVENT-ELEMENTS is taken as all the axons, voltage-
ontrolled and event-drivensynapses in the 
ir
uit. EVENT-WIDTH is the width of the mark for ea
h event on the plot, in pixels.START-TIME and STP-TIME are in millise
onds. RASTER-SPACING is the verti
al spa
ing betweenrasters in pixels. When ONLY-ELEMENTS-WITH-ACTIVITY is non-NIL (the default set to the value of*PLOT-ONLY-ELEMENTS-WITH-ACTIVITY*, whose default is NIL), then only elements that have events areplotted.18.5 Data FolderThe Data Folder allows the storage of (plotted) simulation variables immediately after a simulation run(from the main menu, sele
t the "Immediate information output" option). This folder keeps tra
k of thesimulation names and time bases, so that later on the tra
es may be replotted with referen
e to their originalsimulation name (from the main menu, sele
t the "Edit plot parameters" option). This is 
onvenient, forexample, for 
omparing various tra
es after several simulations. For plotting, data in the folder may beorganized a

ording to the simulation run or a

ording to the type of data (determined by the units of thedata, e.g. mV).If the variable *STORE-PLOT-RESULTS-TO-FOLDER* is set, then all the plotted tra
es will be stored auto-mati
ally to the data folder after ea
h simulation run.18.6 Data for Markov Sub-Parti
lesGating parti
les whi
h are de�ned in order to 
ontrol some state transition of a Markov gating parti
le arenot fully evaluated in the sense of regular gating parti
les (Se
tion 12.7). Thus, these \sub-parti
les" are nottra
ked by themselves, and although they exist as parti
le stru
tures, it is not possible at present to storeor plot their states.



19 ANALYSIS OF DATA 11719 Analysis of DataThis se
tion des
ribes te
hniques for the analysis and display of Surf-Hippo data, both integral to theexe
ution of simulations, for examination of data after a simulation is 
omplete, and for later analysis ofstored data. See also Se
tion s:element-data.19.1 Linear Analysis Fun
tionsThe following fun
tions operate on lists of numbers, either impli
itely via referen
e to a given element's data,on expli
itely as an argument. Most are de�ned in the waveforms.lisp �le.element-integrated-data element &optional data�type model�type [Fun
tion℄A

ording to the plot data and time points of the last simulation, returns the sum of the integrals of the dataof type DATA-TYPE of ea
h element in ELEMENT, of element type TYPE, where the default DATA-TYPEis given in the do
umentation for the ELEMENT-DATA fun
tion. ELEMENT 
an either be a single elementor a list of elements.integrate-wave wave &optional (delta�t 1.0) (x�0 0.0) [Fun
tion℄Given WAVE, an array or list of numbers assumed to be spa
ed evenly by DELTA-T with respe
t to theindependent variable, returns a list whi
h is the 
umulative integral of WAVE, with the initial 
onditionsgiven by the optional argument X-0.di�erentiate-wave wave &optional (time�spe
 1.0) [Fun
tion℄Returns a list whi
h is a di�erentiated WAVE, an array or list of numbers whi
h is assumed to be spa
edevenly with respe
t to the independent variable, with a grid of DELTA-T. Note that the length of the resultis one less than the length of WAVE. Thus, given a n-valued sequen
e WAVE with values:[x1 x2 x3 ... xn℄returns an (n-1)-valued list with values:[(x2-x1)/DELTA-T, (x3-x2)/DELTA-T, ... (x(i+1)-xi)/DELTA-T, ... (xn-x(n-1))/DELTA-T℄Also of interest:element-data-dft element &key data�type type state�index (delta�t 1.0)(referen
e�time�list (
urrent�sim�plot�time�list)) (d
�o�set 0.0) [Fun
tion℄for plotting the frequen
y magnitude and phase of the data appropriate to ELEMENT (see arguments forthe ELEMENT-DATA-DTED fun
tion).19.2 Non-linear Analysis Fun
tionsThe following set of fun
tions are based on the fun
tion:data-extreme &key (min�time 0.0) (max�time *user�stop�time*) dt maxp (what:value) data�list (time�list (
urrent�sim�plot�time�list)) [Fun
tion℄whi
h provides an extremum analysis of DATA-LIST, 
onsidered with respe
t to a time base of step DT(ms), if supplied, otherwise from times in TIME-LIST. The maximum (respe
tively minimum), depending onMAXP of WHAT (:SLOPE, 1ST-DERIVATIVE (same as :SLOPE), :2ND-DERIVATIVE, :VALUE), withina time window between MIN-TIME (ms) and MAX-TIME (ms). The fun
tion returns as values the extremevalue and the time for whi
h that value was dete
ted. If no extreme was dete
ted, then returns as values 0.0and MIN-TIME. Data units are as appropriate for the type of data.The fun
tion:



19 ANALYSIS OF DATA 118element-extreme element &key data�type (min�time0.0) (max�time *user�stop�time*) dt maxp (what :value) data�listmodel�type (time�list (
urrent�sim�plot�time�list)) [Fun
tion℄
alls DATA-EXTREME, where the data is (typi
ally) provided by data of DATA-TYPE of ELEMENT ofELEMENT-TYPE.The fun
tion:element-amplitude element&key data�type (min�time 0.0) (max�time *user�stop�time*)dt (time�list (
urrent�sim�plot�time�list)) data�list model�typenegative�p base�level [Fun
tion℄and the fun
tions ELEMENT-MIN, ELEMENT-MAX, ELEMENT-MIN-SLOPE and ELEMENT-MAX-SLOPE (whi
h have similar arguments as ELEMENT-AMPLITUDE), are all based on ELEMENT-EXTREME.In addition, the referen
e level for the quantity of interest is given by BASE-LEVEL (assumed to be in theunits 
orresponding to that of the data) if supplied, otherwise the referen
e is taken as the minimum (respe
-tively maximum) when NEGATIVE-P is NIL, (respe
tively T). The measured event 
hara
teristi
 is eitherthe maximum or minimum value thereafter, again depending on NEGATIVE-P.The fun
tion:data-amplitude &key (min�time 0.0) (max�time *user�stop�time*) dt (time�list(
urrent�sim�plot�time�list)) data�list negative�p base�level [Fun
tion℄and the fun
tions DATA-MIN, DATA-MAX, DATA-MIN-SLOPE and DATA-MAX-SLOPE (whi
h havesimilar arguments as DATA-AMPLITUDE), are 
ompanion fun
tions to the ELEMENT-based fun
tionsabove, and may be used when you have an expli
it data list. This 
an be more eÆ
ient if, for example,various analyses are to be done on the same sampled simulation data. In this 
ase, it is advantageous to�rst derive and assign to a lo
al variable a sampled version of some element's data, and then pass that listto su

esive 
alls of the desired analysis fun
tions.19.3 Event Dete
tion and RemovalThe basi
 fun
tions for dete
ting events are:list-maxs wave &optional (delta�t 1.0) (max 0.0) (min�max�time 0.0) [Fun
tion℄list-mins wave &optional (delta�t 1.0) (min 0.0) (min�min�time 0.0) [Fun
tion℄These two fun
tions �nd event epo
hs for the data in WAVE, with time steps DELTA-T. Both return twolists as values, the MAX (respe
tively MIN) positive and negative-going (respe
tively negative and positive-going) 
rossing times, whenever the duration framing a parti
ular positive-negative pair of MAX (respe
tivelynegative-positive pair of MIN) 
rossings is greater than MIN-MAX-TIME (respe
tively MIN-MIN-TIME).frame-min-maxs wave max�min�wave &optional (delta�t 1.0) (max 0.0) (min 0.0)(min�min�max�time 0.0) messages [Fun
tion℄This fun
tion strips epo
hs in WAVE (time step of DELTA-T) a

ording to analysis applied to MAX-MIN-WAVE, and returns the pro
essed wave. Epo
hs are dete
ted by applying LIST-MINS and LIST-MAXSto WAVE, using MAX and MIN, respe
tively, and MIN-MIN-MAX-TIME as for the MIN-MIN-TIME andMIN-MAX-TIME arguments, respe
tively. On
e an epo
h is dete
ted, the output data is held 
onstant untilthe end of a given epo
h. For example, events in a voltage waveform 
ould be stripped based on extrema inthe voltage derivative:1. Get a list of data into WAVE with some DELTA-T



19 ANALYSIS OF DATA 1192. Get a DVDT with (DIFFERENTIATE-WAVE WAVE DELTA-T).3. Look at the derivative (plot-timed-data dvdt nil nil :delta-t delta-t) to get an idea of the"events" that you are looking for.4. Call FRAME-MIN-MAXS with appropriate values for the max and min DVDT values.A related fun
tion is:�nd-zero-
rossings wave &optional (delta�t 1.0) (min�di�eren
e�from�0 0.0) [Fun
tion℄where for data in WAVE with time step DELTA-T, a list of the zero-
rossing times is returned.19.4 Spike Dete
tionThese fun
tions are spe
ialized for spike dete
tion:element-spike-times element &key (spike�threshold �20.0) (sub�threshold�time 0.5)(supra�threshold�duration�min 0.1) model�type data�liststart�time (time�base (
urrent�sim�plot�time�list)) [Fun
tion℄Returns a list of dete
ted spikes from the voltage of the soma or segment asso
iated with ELEMENTof TYPE, a

ording to the SPIKE-THRESHOLD (mV), SUPRA-THRESHOLD-DURATION-MIN, SUB-THRESHOLD-TIME. The voltage tra
e from ELEMENT is resampled at a time step DT with referen
e toREFERENCE-TIME-LIST. All times are in millise
onds.element-�ring-frequen
y element &key(spike�threshold �20.0) (supra�threshold�duration�min 0.1)(sub�threshold�time 0.5) model�type data�list (time�base(
urrent�sim�plot�time�list)) (start�time 0) (end�time*user�stop�time*) [Fun
tion℄
Returns the �ring frequen
y in Hz from spikes dete
ted from the voltage of the soma or segment asso
iatedwith ELEMENT, between START-TIME (default 0ms) and END-TIME (default *USER-STOP-TIME*).Also takes key word arguments for spike dete
tion as used in the fun
tion ELEMENT-SPIKE-TIMES.19.5 Phase Plotsphase-plots element�pairs &key title y�label x�label x�min y�min x�max y�max(prompt�for�overlay t) [Fun
tion℄The argument ELEMENT-PAIRS is one of the following:(element-1 element-2)Where the data types for ea
h element are defaults from:(type
ase element((or axon segment soma node) 'voltage)((or 
hannel synapse isour
e vsour
e) '
urrent)((or parti
le 
on
-parti
le) 'state)(
on
-int '
on
entration-1))Or data types may be spe
i�ed for any of the elements:((element-1 data-type) element-2)(element-1 (element-2 data-type))((element-1 data-type) (element-2 data-type))



19 ANALYSIS OF DATA 120Or a list of element pairs (with optional data types) may be given:(((element-1 data-type) element-2)(element-3 element-4)(element-4 (element-5 data-type)) ... )For example:(PHASE-PLOTS `((("Hippo-soma-CA-IN-GEN" 
on
entration-2) ,*soma*)("Hippo-soma-CA-IN-GEN" ,*soma*)))Note that in this example, the global variable *SOMA* is referen
ed. Using list 
onstru
tion with the ba
kquotenotation (`), the 
omma before *SOMA* allows it to be evaluated. This 
ould have been done with the nameof the *SOMA*:(PHASE-PLOTS `((("Hippo-soma-CA-IN-GEN" 
on
entration-2) "Hippo-soma")("Hippo-soma-CA-IN-GEN" "Hippo-soma")))Another example:(PHASE-PLOTS `(("Hippo-soma-NA-RF2-NAM-RF2" "Hippo-soma-NA-RF2-NAH-RF2")("Hippo-soma-NA-RF1-NAM-RF1" "Hippo-soma-NA-RF1-NAH-RF1")):title "Na Parti
le States":x-label "State" :x-max 1.0 :x-min 0.0:y-label "mV" :y-max 40 :y-min -80)Note that a given element data type must have been enabled for plotting, for example with the menus orwith the fun
tion ENABLE-ELEMENT-PLOT des
ribed in Se
tion 18.2.19.6 Plotting Ar
hived DataAs des
ribed in Se
tion 20, simulation data that has been ar
hived to .dat �les may be later reloaded andplotted via the menus. While this interfa
e may be improved in later releases, the following des
ribes howyou may 
ombine tra
es from di�erent simulations in a single plot by entering plotting fun
tions dire
tlyinto the Lisp interpreter.We will assume that three simulations were run previously, named AXON-298604580, AXON-298604630,AXON-298604648, and ea
h were saved (see Se
tion 30 for how simulations are named). We shall also assumethat for ea
h simulation a soma voltage and a 
urrent sour
e were plotted. Remember that in order to save(ar
hive) a simulation, you must do so before the next simulation run. In other words, the memory lo
ationsfor the simulation data are overwritten with every subsequent simulation. Also, note that only 
ir
uit datathat is plotted may be subsequently ar
hived.Now, after these simulations, or during a subsequent Surf-Hippo session (and as des
ribed in the �le.do
se
tion mentioned above), these ar
hives may be loaded either from the menus or by entering LOAD 
om-mands to Lisp dire
tly. For example, in the latter 
ase (assuming that the dire
tory "data" is a subdire
toryof the 
urrent working dire
tory - otherwise the full pathname is needed):* (load "data/axon/8_16_1994/AXON-298604580.dat")As des
ribed in Se
tion 20, loaded ar
hive data may be plotted out with the menus:[Main Simulation Menu:<Modify plot parameters - plot loaded ar
hivedata><Plot loaded ar
hive data>[Choose Ar
hived Simulation℄℄Otherwise, enter the Lisp interpreter (QUIT from the Main Menu), and use the PLOT-TIMED-DATA andPLOT-XY-DATA fun
tions to plot out the ar
hive lists whose names are given by evaluating *ARCHIVE-VARIABLE-LIST*.For example, after the three ar
hives are loaded (assuming nothing else was loaded from the ar
hive), eval-uating *ARCHIVE-VARIABLE-LIST* shows what is available:



19 ANALYSIS OF DATA 121* *ARCHIVE-VARIABLE-LIST*((AXON-298604580AXON-298604580-TIME((AXON-298604580-MARCH-SOMA-ISRC-ISOURCE-CURRENT-DATA ISOURCE-CURRENT-DATA)(AXON-298604580-MARCH-SOMA-NODE-VOLTAGE-DATA NODE-VOLTAGE-DATA)))(AXON-298604630AXON-298604630-TIME((AXON-298604630-MARCH-SOMA-ISRC-ISOURCE-CURRENT-DATA ISOURCE-CURRENT-DATA)(AXON-298604630-MARCH-SOMA-NODE-VOLTAGE-DATA NODE-VOLTAGE-DATA)))(AXON-298604648AXON-298604648-TIME((AXON-298604648-MARCH-SOMA-ISRC-ISOURCE-CURRENT-DATA ISOURCE-CURRENT-DATA)(AXON-298604648-MARCH-SOMA-NODE-VOLTAGE-DATA NODE-VOLTAGE-DATA))))The list 
ontains three lists, one for ea
h simulation. The CAR of ea
h simulation list is a symbol with thename of the simulation (e.g. AXON-298604580). The se
ond 
omponent of ea
h simulation list is a symbolwhi
h points to a list of time points (e.g. AXON-298604580-TIME).The last 
omponent of ea
h simulation listis a list of lists, ea
h of whi
h is the 
ons of a symbol pointing to a data list (e.g. AXON-298604580-MARCH-SOMA-ISRC-ISOURCE-CURRENT-DATA) and a symbol (e.g. ISOURCE-CURRENT-DATA) whi
h de-s
ribes the type of data (although this is often apparent from the the data list symbol itself). For example,if we evaluate these symbols dire
tly:* AXON-298604580-TIME(1399.402 1398.402 1397.402 1396.402....0103995 .0001147 0.0)* AXON-298604580-MARCH-SOMA-ISRC-ISOURCE-CURRENT-DATA(0.200 0.200 0.200 0.200 0.200 0.200...0.0 0.0 0.0 0.0 0.0 0.0 0.0)*Note that the time list is in reverse order - however, the ar
hived 
ir
uit data is also stored in reverse order,so there is always a dire
t mat
h between the time list and the data lists in a given .dat �le.In general, the PLOT-TIMED-DATA fun
tion is more 
onvenient when making a plot of one or more tra
esfrom the same simulation:* (plot-timed-data AXON-298604580-MARCH-SOMA-NODE-VOLTAGE-DATA``Soma Voltage, Control" AXON-298604580-TIME)PLOT-XY-DATA must be used, however, when tra
es from di�erent simulations are plotted, so that ea
h datalist may be mat
hed with the proper time sequen
e:* (plot-xy-data (list (list AXON-298604580-TIME AXON-298604580-MARCH-SOMA-NODE-VOLTAGE-DATA)(list AXON-298604630-TIME AXON-298604630-MARCH-SOMA-NODE-VOLTAGE-DATA)(list AXON-298604648-TIME AXON-298604648-MARCH-SOMA-NODE-VOLTAGE-DATA))(list "Soma Voltage, Control""Soma Voltage, Na Blo
ked""Soma Voltage, K Blo
ked"))Refer to the fun
tion do
umentation in sr
/gui/plot-ha
k-top.lisp for more options for these two fun
-tions, or to do
/window-help/plotting-
ontrol.do
 (all the keyboard, mouse and menu intera
tionsdes
ribed there will work for any plots you make with 
alls to PLOT-TIMED-DATA or PLOT-XY-DATA).



19 ANALYSIS OF DATA 12219.7 Sessions of SimulationsThe session organization allows you to run a sequen
e of simulations with all the results (as generated by the
all to PRINT-ANALYSIS, see below) being sent (appended) to the same *.results �le. When *SESSION-NAME*is rede�ned, then the next 
all to PRINT-ANALYSIS (assuming that *DUMP-ANALYSIS-TO-FILE*and *PRINT-OUT-TO-LISP*are T) will write the results to a new *.results �le, determined by the new value of *SESSION-NAME*.The advantage of the *.results �le format is that these �les may be loaded dire
tly into the Lisp, and thedata manipulated more readily than is the 
ase if you need to sear
h and edit through the *.info �les (whi
hmay have the same data, but in a more readable form).The fun
tion (WRITE-COMMENT-TO-ANALYSIS-FILE 
omment-string) will write (append) its argumentto the 
urrent *.results �le.19.8 OthersFor organizing the way data is grouped, the following global variables may be useful (these may be set fromthe plot details menu):*GROUP-PLOT-DATA-BY-CELL* [default T℄*GROUP-PLOT-DATA-BY-CELL-TYPE* [default T℄*PLOT-SYNAPSES-BY-MAJOR-ION* [default nil℄*PLOT-CHANNELS-BY-MAJOR-ION* [default nil℄*PLOT-CURRENTS-BY-MAJOR-ION* [default nil℄Depending on these variables, for a given type of data (e.g. voltage, 
ondu
tan
e, 
urrent), all tra
es asso-
iated with ea
h 
ell or 
ell type in the 
ir
uit, for the �rst two, or with a given ion, for the last three, aredisplayed in their own window(s).



20 DATA AND INFORMATION FILES 12320 Data and Information FilesThere are several opportunities to write out either data �les (simulation plot data or 
ir
uit element des
rip-tions) or simulation information �les.The general level of detail for information output about the 
ir
uit is determined by the global variable:*simulation-print-detail* :terse [Variable℄whi
h may be set to :NONE, :TERSE, :MEDIUM, :FULL, :FULL WITH SEGMENTS. The destination ofthis information may be set from the Main Menu (sele
t \Information Management").The advantage of output to the Lisp window is eÆ
ien
y, and if this is ILisp or other editor-basedwindow, then the output 
an be readily edited. The advantage of the Information Window is that this 
anbe hard
opied in the same manner as the Plotting windows. From within the Information Window (as wellas Histology or Plotting Windows), Control-p will prompt for printing the sele
ted window (and all others).The Info windows s
roll, and may be resized by hand: the printed version in
ludes only the part of thewindow that is visible on the s
reen.You 
an also generate immediate information output either via the "Information management" or "Printout basi
 info" options from the Main Menu. The latter 
hoi
e prints out a simple summary of the 
ir
uitto the Lisp window, and is 
onvenient for qui
k 
he
ks of the 
ir
uit. Note that the time printed out andthe simulation name is only 
hanged when a simulation is a
tually run.20.1 Do
umenting User VariablesWhen the global variable *DOCUMENTED-USER-VARIABLES* is set to a list of globally bound symbols (i.e.global variables), the PRINT-CIRCUIT fun
tion will print out the symbols and their values both at thebeginning of simulations, and as part of any info �les written by the simulator (unless the optional argumentto PRINT-CIRCUIT is :TERSE or :NONE). This is useful when you have de�ned your own set of globalvariables, and you wish to have an automati
 do
umentation of their values. For example, if the user set:(setq *DOCUMENTED-USER-VARIABLES*'(NEURONS-PER-LAYER *somati
-
xns* maximum-glutamatergi
-density))then the simulation information might in
lude:(setq NEURONS-PER-LAYER 103*SOMATIC-CXNS* 4MAXIMUM-GLUTAMATERGIC-DENSITY 2093)depending on whatever value these variables happened to have. The SETQ format allows simple in
lusionof this information in another lisp �le. Note that *DOCUMENTED-USER-VARIABLES* is 
leared when a new
ir
uit is loaded.If the global variable *DOCUMENT-ALL-NEW-VARIABLES* is T [default NIL℄, PRINT-CIRCUIT will printout any global variables that were de�ned after the initialization of Surf-Hippo in the SURF pa
kage or in*DOCUMENTED-USER-VARIABLES*.If you want these values to be automati
ally written to a �le at the end of a simulation, remember touse:dump-do
umented-user-variables-�le [Fun
tion℄20.2 Automati
 Simulation File CreationAutomati
 information and data �le or window output 
an be enabled for ea
h simulation via menus startingwith the Information management option in the Main Menu. Surf-Hippo will dump simulation/
ir
uitinformation to either an \Information Window" or the Lisp Listener. The advantage of output to a LispListener is eÆ
ien
y, and if Ilisp or other editor-based window is used, then the output 
an be readily



20 DATA AND INFORMATION FILES 124edited. The advantage of the Information Window is that it 
an be hard
opied in the same manner as thePlotting or Histology windows. The options in this series of menus 
ontrol the do
umentation generatedeither immediately or with ea
h and every simulation run.20.3 Editing Lisp FilesYou may want to edit a Lisp �le that was 
reated by Surf-Hippo just to add some 
omments, i.e. withoutreally messing with the Lisp 
ode or syntax. There are two ways that 
omments are delineated. First,anytime a semi-
olon appears in a line, then the remainder of that line is a 
omment, e.g.:(some lisp 
ode) ; This is the 
ommentA more 
onvenient method for lengthy 
omments is to bra
ket the text with "#|" and "|#", as follows:...(lisp 
ode)(some more lisp 
ode)#|The sharp sign followed by the verti
al bar starts text that will be ignoredby Lisp when the file is read. The text ends with a verti
al bar followed by asharp sign, like this:|#(more lisp 
ode)(and some more lisp 
ode)...20.4 Loading Data, Cir
uit Des
ription and Element Des
ription FilesData �les are written as ASCII text whi
h 
an be loaded into Lisp as is. Surf-Hippo �les 
an also be 
ompiledto save spa
e and loading time. Whenever simulation data is written, the data �le 
on
ludes with a Lispstatement whi
h updates the global variable *ARCHIVE-VARIABLE-LIST* (when the ar
hive �le is loadedba
k into the same (or another) Surf-Hippo session). As the name suggests, *ARCHIVE-VARIABLE-LIST*keeps tra
k of the loaded ar
hived data.Data, 
ir
uit element, and 
ir
uit de�nition Lisp �les may all be loaded via the �le loading menu (followlinks from the main menu), or by temporarilly quitting Surf-Hippo (don't quit Lisp), and using the Lispfun
tion LOAD, e.g. (assuming that the dire
tory "data" is a subdire
tory of the 
urrent working dire
tory -otherwise the full pathname is needed):* (load "data/basi
-hippo/1_30_1994/basi
-hippo-296895207.dat")Note that information �les (with �le extension .info) are *not* Lisp �les and 
annot be loaded into Lisp:there are for reading by humans only.Loaded ar
hive data may be plotted out from the plotting menu series. Note that the ar
hive option inthe main menu only shows up if ar
hived data has been loaded into Surf-Hippo.Lisp �les may also be loaded from the "Overall parameters, load 
ir
uit or other �les" option of the Mainmenu. See the dis
ussion on saving loadable Type-Def �les in Se
tion 9.20.5 Random State Referen
e FilesFor simulations that use the RANDOM fun
tion for generating a pseudo-random sequen
e, the seed may beinitialized by 
alling GET-REFERENCE-RANDOM-STATE. This reads in a �le that is 
reated by 
alling the fun
tionSAVE-REFERENCE-RANDOM-STATE. The seed �le referen
ed by both of these fun
tions is /surf-hippo/random-state by default; you 
an supply an alternative �lename as an optional argument is desired.Note that for 
onsisten
y, SAVE-REFERENCE-RANDOM-STATE should only be 
alled on
e at a given site. TheSurf-Hippo distribution 
ontains a random-state �le written under CMUCL 18, but there is no guaranteethat this will work for other implementations.



21 FILE NAMES 12520.6 The WRITE-ELEMENT-DATA Fun
tionThe WRITE-ELEMENT-DATA fun
tion 
an be 
alled from the interpreter, or from a s
ript �le with argumentsthat limit whi
h plotted tra
es are saved to �le:write-element-data &optional elements�and�slots &key (output�format :lisp) �lenamesuppress�
omments [Fun
tion℄The �rst optional argument is a list of elements or sublist 
ontaining the name of an element and symbol forthe type of data saved. If there is only an element referen
e, then the DEFAULT-DATA-TYPE for that elementwill be used. For example:(WRITE-ELEMENT-DATA '("11-5-6""11-5-46"("j43d-soma" dvdt)))Note that data may only be written to �le if it was saved from the last simulation (e.g. by using theappropriate 
all to ENABLE-ELEMENT-PLOT). In the 
ase of :LISP OUTPUT-FORMAT, the written data�le in
ludes an assignment to spe
ial variables whi
h may be referen
ed when the data �le is loaded (see*ARCHIVE-VARIABLE-LIST*). For other options see the Referen
e Manual.20.7 The WRITE-LISTS-MULTI-COLUMN Fun
tionMulti-
olumn data �les may be written with the fun
tion:write-lists-multi-
olumn lists &key (�lename *results��lename*) (pathname�dire
tory"") announ
e�write indent 
omment supersede (
olumn�width20) quit�on��rst�null [Fun
tion℄This writes the values in the sublists of LISTS in a multi-
olumn format to FILENAME under PATHNAME-DIRECTORY. Note that the sublists may 
ontain numbers, strings or symbols. If PATHNAME-DIRECTORYnot supplied, then derive one under the surf-hippo data dire
tory. If in
luded, COMMENT is written to �le�rst, followed by the data. Columns are tabbed by COLUMN-WIDTH spa
es [default 20℄. If a given sublistis empty while running through all the sublists of list, then a spa
e is output for the 
orresponding 
olumnentry, unless QUIT-ON-FIRST-NULL is T [default NIL℄, in whi
h 
ase the �le is 
losed.21 File NamesNote that variables holding dire
tory names in Surf-Hippo end with "/", 
ontrary to the UNIX 
onvention.For example, the global variable *SURF-HOME*will be a string with a �nal \/" (e.g. \/home/foo/surf-hippo/"),even though it is derived from the shell environment variables SURFHOME or HOME (whi
h may or may nothave a �nal \/", e.g. \/home/foo/surf-hippo").In general, output �lenames (plots, data, et
.) are 
onstru
ted from the 
urrent time stamp and, if*ADD-SIMULATION-TO-FILENAMES* is T, the *SIMULATION-NAME*. This makes it 
onvenient to keep tra
kof simulation re
ords. The time stamp me
hanism des
ribed above is designed to generate a unique namefor ea
h simulation (as long as they o

ur at least 10 se
onds apart). Also, the �le writing fun
tions willtypi
ally referen
e sub dire
tories whose names are 
onstru
ted from the 
ir
uit name and the date, forexample (if *ADD-SIMULATION-TO-FILENAMES* is T):surf-hippo/data/star-ama
rine-3/3_29_1994/star-ama
rine-3-297395627.dator if *ADD-SIMULATION-TO-FILENAMES* is NIL:surf-hippo/data/star-ama
rine-3/3_29_1994/297395627.dat



21 FILE NAMES 126However, posts
ript �lenames are generally derived from the title of the window that is being printed, soyou must take 
are that this forms a legal (to Unix) �lename.There is also a global variable *MAXIMUM-PS-FILENAME-LENGTH* (default 32), whi
h we added after someproblems with VMS server based printers.It is also possible that a �lename, for example derived from a window title, will result in a �le that issu

essfully written, but not printed (assuming that printing was requested). This may not generate an errormessage, so it is important to verify that a given �le is a
tually printed. If there is problems, one solutionis to 
hange the �lename and print the �le from the UNIX shell.For the moment, any automati
ally generated �lename with a leading " " or "-" has these 
hara
tersremoved. This is done by the fun
tion MAKE-NICE-FILENAME.



22 PLOT DATA AND PLOTTING WINDOWS 12722 Plot Data and Plotting WindowsSee also Se
tions 31 and 23.8. This do
umentation is preliminary.22.1 Basi
 Con
eptsMany plot parameters may be set in the "Setting Up Plot Parameters" menu (
hoose "Modify plot param-eters" from the Surf-Hippo main menu).Simulation data is saved onto lists every *SAVE-DATA-STEP* time steps (default 2, i.e. data is saved everyother time step). The only ex
eption to this rule is that the last time step of the simulation is alwayssaved. The variable *SAVE-DATA-STEP* may be set in the "Setting Up Some More Plot Parameters" menu(
hoose "Change some more plot details?" in the "Setting Up Plot Parameters" menu), in the "Time Stepand Numeri
al Integration Parameters" menu (from the "Overall parameters" menu), or in the "ModifySimulator Global Variables" menu. See also Se
tion 27.The data in a given plot is organized as a group of sets of tra
es, where ea
h set is typi
ally from adi�erent simulation run. The default operation for plotting is that if the 
urrent plotting windows are to bereused, then the results from a new simulation repla
e the old data.When a new 
ir
uit is loaded, or if the global variable *CREATE-NEW-PLOT-WINDOWS* is T, then plotoutput will go to new windows, preserving any previous ones. A new window will also be 
reated if anexisting window to whi
h the data would have been presented has been lo
ked (CONTROL-L). A relatedvariable is *CREATE-NEW-SIMULATION-PLOTS* , whi
h makes sure to 
reate a new set of plot windows for thenext simulation.22.1.1 Overlaying DataIf *CREATE-NEW-PLOT-WINDOWS* in NIL and the global variable *OVERLAY-ALL-PLOTS* is T (default nil),then new data is drawn over the old data, and the data is added to the plot windows. As a result subsequentzooming or unzooming applies to all the overlaid data. If the global variable *ACCOMODATE-ALL-OVERLAYS*is set (dire
tly or via the "Setting Up Plot Parameters" menu), then the 
oordinates of the overlaid windowswill be adjusted so that all overlaid data will be 
ontained within the windows.If the variable *PRESERVE-PLOT-LAYOUT* is set (default nil), then any new data sent to a plot windowwill be displayed without 
hanging the s
aling of the window.For mouse and keyboard senstive a
tions for plot windows, see Appendix D.22.1.2 Plot Window MenuVery extensive editing of plot windows may be done via the Plot Window Menu (CONTROL-m over thewindows). Data 
an be dire
tly written to Lisp �les via the plotting menu.22.1.3 Re-Sizing WindowsAfter a plot window is resized with the window manager and mouse, the data 
an be redrawn with theCONTROL-RIGHT (replot) 
ommand, whi
h will restore the original plot parameters. Otherwise, 
all upthe main plot window menu with CONTROL-m and hit OK. This will make sure that the plot parametersare maintained from the previous window sizing.22.1.4 Data AxesAxes may be standard (abs
issa and ordinate extending over the entire plot) or simple (horizontal and verti
albars, lengths a

ording to the spe
i�ed axes' in
rements, and lo
ated a

ording to the plotting menu, defaultupper right hand 
orner). The simple type is more 
ommonly used for displaying physiologi
al data.



22 PLOT DATA AND PLOTTING WINDOWS 12822.1.5 Waterfall PlotsWaterfall plots may be generated with the plot window menu ("Edit mis
ellaneous parameters" option).The s
ale bar lengths in waterfall plot mode are set by the X and Y axis intervals. O�sets between the tra
eare set by the menu. Tra
e labels may be pla
ed in the upper left 
orner, or adja
ent to ea
h tra
e on theright.You may need to experiment a bit with various plot window parameters to get the proper layout. Withthe plot menu you 
an spe
ify automati
 waterfall layout, whi
h may be satisfa
tory in some 
ases. In this
ase, some relevant global variables in
lude:*DEFAULT-Y-PLOT-TOP-GAP-EXTRA-WATERFALL* - integer, in pixels*X-TRACE-OFFSET* - float, in units of the data*X-PLOT-LEFT-GAP-WATERFALL\index{*X-PLOT-LEFT-GAP-WATERFAL} - integer, in pixels*AUTO-WATERFALL-Y-TRACE-OVERLAP* - between 0.0 and 1.0Note that zooming does not work with waterfall plots. Also, the absolute 
oordinate values from the 
entermouse will be relative to the the �rst tra
e in the plot - the dy/dx values will be un
hanged from the
onventional plot.22.1.6 Log PlotsUsing the plot window menu, either the X or Y axes may be plotted on a logarithmi
 s
ale, with eitherthe natural (E) base or other as spe
i�ed. If an attempt is made to take the logarithm of an non-positivenumber, then an error is signaled, and you have the option of spe
ifying an appropriate o�set that allowsthe log.The log operation is only applied to the data within the range spe
i�ed by the X and Y minimum andmaximum parameters (if de�ned).22.1.7 Tra
e Ordering and Number per PlotThe order of the tra
es in a plot is determined by the order of the data and label arguments to fun
tionsPLOT-TIMED-DATA or PLOT-XY-DATA. Refer to the fun
tion do
umentation in sr
/gui/plot-ha
k-top.lispfor more information, or analysis.do
. The order of the tra
es may also be set via the plotting menusequen
e.The global variable *TRACES-PER-PLOT* (default value 6) 
onstrains the number of tra
es per plot win-dow. If set to 0, then there will be no limit to the number of tra
es per plot. This may be set with the toplevel plot parameters menus.22.2 Overall Plot LayoutIn the default 
ase, the plotting fun
tions arrange the layout of the plot window in a reasonable way, generallymaximizing the available spa
e and allowing room for labels, et
. For various reasons, it may be preferableto set 
onstraints on the layout. The gaps between the area in whi
h the data appears and the windowborders may be set with the following key arguments to PLOT-TIMED-DATA, PLOT-POINTS, PLOT-SCATTER,and PLOT-XY-DATA::UPDATE-FIXED-GAP-PARAMETERS:USE-FIXED-TOP-GAP:FIXED-TOP-GAP [default 0 pixels℄:USE-FIXED-BOTTOM-GAP:FIXED-BOTTOM-GAP [default 0 pixels℄:USE-FIXED-RIGHT-GAP:FIXED-RIGHT-GAP [default 0 pixels℄



22 PLOT DATA AND PLOTTING WINDOWS 129:USE-FIXED-LEFT-GAP:FIXED-LEFT-GAP [default 0 pixels℄The �xed gaps may be negative. The keyword :UPDATE-FIXED-GAP-PARAMETERSmust be T in order for theother arguments to be 
onsidered. These parameters may also be set via the plot window menus (sele
t\Overlay and layout spe
i�
ations").22.3 Window CommentsThere are two 
ategories of global 
omments that will be automati
ally to plot windows. For all plots gener-ated by a 
ir
uit simulation, when the global variable *SIMULATION-PLOT-WINDOW-COMMENT* (default NIL) isa string this 
omment will be added at the position given by the global variable *SIMULATION-PLOT-WINDOW-COMMENT-POSITION*(default :LOWER-RIGHT, other options given by the variable *COMMENT-POSITIONS*). More generally, ifthe global variable *GLOBAL-PLOT-COMMENT* is set to a string (default NIL), this 
omment is added toany window produ
ed by the fun
tions PLOT-XY-DATA, PLOT-TIMED-DATA, PLOT-POINTS, PLOT-SCATTER,PLOT-HISTOGRAM,PLOT-HISTOGRAM-LIST,PLOT-POLAR-DATA,PLOT-POLAR-SIMPLE-ARRAYand PLOT-POLAR-VECTORS,at the position given by the *GLOBAL-PLOT-COMMENT-POSITION* (default given by *DEFAULT-COMMENT-POSITION*).22.4 Mis
ellaneousFor the fun
tion REFRESH-ALL-PLOTS, the optional GRID argument 
an be :DRAW, :ERASE or nil (don't
hange). These fun
tions operate on :STANDARD-PLOT windows (e.g. those produ
ed by PLOT-TIMED-DATA,PLOT-XY-DATA, PLOT-SCATTER, PLOT-POINTS):refresh-all-plots &optional grid [Fun
tion℄refresh-plot win &optional (grid *refresh�plot�default�grid*) [Fun
tion℄22.5 HintsSometimes, axis limits or ti
k marks aren't quite right be
ause of quantization error in the 
al
ulations forlaying out the plot. Try twiddling various layout/axis parameters (e.g. 
hanging a "maximum value" from2.0 to 2.0001) to 
orre
t this.22.6 Data FolderThe Data Folder allows the storage of (plotted) simulation variables immediately after a simulation run(from the main menu, sele
t the "Information management" option). This folder keeps tra
k of the simulationnames and time bases, so that later on the tra
es may be replotted with referen
e to their original simulationname (from the main menu, sele
t the "Edit plot parameters" option). This is 
onvenient, for example,for 
omparing various tra
es after several simulations. For plotting, data in the folder may be organizeda

ording to the simulation run or a

ording to the type of data (determined by the units of the data, e.g.mV).If the variable *STORE-PLOT-RESULTS-TO-FOLDER* is set, then all the plotted tra
es will be stored auto-mati
ally to the data folder after ea
h simulation run.22.7 Writing Plot Data to FilesThe XY data of plotted tra
es may be written to ASCII �les either by the plot window menu, or by dire
tly
alling:



22 PLOT DATA AND PLOTTING WINDOWS 130grab-and-store-plot-data &key �lename win for
e�menu (output�format :lisp)suppress�
omments [Fun
tion℄In either 
ase you have the option of storing the data in a Lisp or a 
olunns format, in the 
ase of the fun
tion
all by the :OUTPUT-FORMAT keyword::OUTPUT-FORMAT key File format-------------------------------------------:LISP [default℄ A list of lists - ((x1 x2 ... xn)(y1 y2 ... yn)):COLUMNS Two 
olumns -x1 y1x2 y2...xn yn22.8 Munged Dashed LinesDashed line styles (parti
ularly for thin lines) do not display properly when there is a high density of points.This problem may be due to either a Garnet or CLX bug. A temporary workaround is a plot window slot:PLOT-POINT-SKIP, whi
h may be either set dire
tly or as a key argument to PLOT-TIMED-DATA, or viathe plot window menu (
urrently via the "Overlay and layout spe
i�
ation and 
ag menu" option in plotwindow menu sequen
e). This parameter should be set so that an oversampled plot will only show everyother N points, where N is given by the window's :PLOT-POINT-SKIP slot.22.9 Plot Related Fun
tions and Variables*USE-SIMULATION-NAME-FOR-SIMULATION-PLOT-TITLES*
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sSee also Se
tion 31.23.1 Basi
 Interfa
eThe main histology graphi
s menu may be invoked from either the Main Menu, by the histology graphi
swindow CONTROL-m option, or by invoking the fun
tion HISTOLOGY at the lisp prompt.Note that if the 
ell(s) in a histology window is(are) no longer loaded into Surf-Hippo, then modi�
ation,sele
tion of 
ell elements, et
, is disabled.The options in this menu or in its submenus in
lude variations on the following:� "Viewing angle theta (degrees; For retina, 0 is for 
at mount; 90 is radial mount)" -> See below.� "Viewing angle phi (degrees; For retina 0 is 
at/radial mount)" -> See below� "Drawing s
ale (mi
rons/pixel):"� "Method to size the histology window to 
ells" -> Menu option allows for entering window parameters(see below).� "Create new histology window?"� "Change histology rendering details" -> this brings up a menu whi
h may in
lude the following:{ "Label/Mark all 
ell nodes?"{ "Label/Mark plotted nodes?" -> This 
an be used without drawing the 
ells to update newly
hosen or deleted plotted nodes.{ "Draw/Label sour
es on 
ells?"{ "Channel graphi
s menu"{ "Synapse stimulus/RF graphi
s menu"{ "Draw only proximal segments?" -> prompts for the number of proximal segments out from thesoma to draw, for ea
h dendriti
 trunk.{ "Modify element graphi
s"If menu-based window sizing is 
hosen, then another menu appears with:"Center of window along X dire
tion [um℄:""Center of window along Y dire
tion [um℄:""Histology window width [um℄""Histology window height [um℄"For mouse and keyboard senstive a
tions for plot windows, see Se
tion E.23.2 Cell 2D Proje
tionsProje
ting 3D stru
tures onto the histology window is a two part pro
ess: The �rst step is the 
al
ulation ofthe 2D proje
tion of the stru
ture, and the se
ond step is the translation of the proje
tion within the planeof the display window.The anatomi
al information for ea
h 
ell 
omponent is referen
ed to an XYZ 
oordinate system, withan impli
it origin at (0,0,0). In this dis
ussion we shall refer to the viewing plane as the X'Y' plane. Thedefault orientation of this plane is su
h that X!>X' and Y!Y'. The orientation of this XYZ system withrespe
t a given brain stru
ture is arbitrary, but as a general rule the typi
al anatomi
/experimental viewis 
orresponds to the default X'Y' proje
tion. Typi
ally, this means that Z is taken as the depth withintissue, oriented with respe
t to 2-dimensional sheets in brain. For example with retina, the XY plane is
ongruent with the plane of the retina, with the Z axis aligned along the radial dimension (for example, Z=0
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reasing in the distal dire
tion). Thus the default orientation of the X'Y' viewing plane
orresponds to the retinal whole mount 
on�guration, or retinotopi
 orientation. For 
attened 
ortex, theXY plane is 
ongruent with the surfa
e of the brain, and the Z axis 
rosses the 
orti
al layers. For 
orti
aland hippo
ampal sli
e preparations, the XY plane is in the plane of the sli
e, sin
e the sli
e is typi
allyviewed "en-fa
e". This is also the system for 
orti
al neurons that are typi
ally viewed perpendi
ular to the
orti
al surfa
e.Two dimensional proje
tions onto the X'Y' viewing plane are taken as follows. Assume that the XYZ
oordinates are pla
ed with the XZ plane in the horizontal dire
tion, with the Z axis emerging from the pageand the X axis pointing to the right in the plane of the page. The Y axis points up in the plane of the page.Start with THETA = PHI = 0, where the X'Y' viewing plane is 
ongruent with the XY plane. As the X'Y'plane is rotated about the Y' axis (now = Y axis), the azimuth angle PHI is the angle between the X andX' axises. Next, the X'Y' plane is rotated around the X' axis, and the elevation angle THETA is the anglebetween the Y and Y' axises. When a stru
ture is drawn, the THETA and PHI values for the appropriatewindow are used to generate the 2D representation of ea
h element in the stru
ture.Subsequent translation of the 
ell drawing in the viewing plane with respe
t to the histology window isdone via the XY (really X'Y') 
enter parameter menu des
ribed above. Rotation of the proje
ted image, perse, is not implemented.If either the viewing theta or phi is non-zero, the viewing angles will be displayed in the lower right
orner. This label may be removed (or added to) via the (Control-t) text 
ommand des
ribed above.23.3 Depth Relations are Not Rendered FaithfullyAs a 
ompromise to eÆ
ien
y, there is no attempt to maintain depth relationships between overlappingse
tions of the dendriti
 tree or soma. For example, when two se
tions of the tree with two di�erent 
oloroverlap, the 
hoi
e of whi
h se
tion is drawn "in front of" the other is arbitrary. Somas are drawn either
ompletely behind or 
ompletely in front of the dendriti
 trees, sele
table from the Histology Menu, or notat all (also sele
table from the Histology Menu).23.4 Hints for Rotating Zoom ViewsIf you want to look at a zoomed view from a di�erent angle (theta, phi), then bring up the Histology menuon the zoom window, spe
ify the desired angles, and make sure to 
li
k the "Fix" or "Menu" option for"Method to size the histology window to 
ells".23.5 Window ResizingThe 
urrent 
ode does an in
omplete job in sizing the graphi
s window properly, espe
ially with respe
t tovisualization of light stimulus or synapse re
eptive �elds. Typi
ally, though, use of the "Fix" or "Menu"options, instead of the "Automati
" option in the Drawing Menu will give you enough freedom to �x thepi
ture. If the automati
 window s
aling is inappropriate you 
an adjust the size of the window by thefollowing steps:1. Resize the window with the mouse and the X window manager. The graphi
s will not readjust to thisresizing, so you have to judge what the 
orre
t size will be.2. Invoke the Cell Drawing menu (from Surf-Hippo Main Menu, or CONTROL-m on the graphi
s win-dow).3. Choose option "Fix" for "Method to size histology window to 
ells" and hit "OK".4. The histology will now be redrawn 
entered on the resized window.If an histology window is resized with the window manager, various graphi
s (in
luding the highlighting ofsele
ted 
ell segments or somas) will be in
orre
t until the 
ell(s) are redrawn as just des
ribed.The maximum size of a histology window is 90% of the s
reen width and height - thus if the 
hosen s
aleis too large then the 
ell drawing may be 
ut o�.



23 HISTOLOGY GRAPHICS 13323.6 Element Visualization - Sour
es, Channels, Synapses, Bran
hesCir
uit elements 
an be highlighted on the histology rendering by 
hoosing the appropriate options in themenus. For 
hannels and synapses, di�erent 
olor markers may be assigned to di�erent 
hannel or synapsetypes (via "Change Histology Rendering Details" option).With the "Mark spe
i�
 bran
hes" option in the histology rendering details, spe
i�
 bran
hes may bemarked along their length with di�erent 
olors. If you have 
hosen a segment prior to 
alling the HistologyMenu, then the Mark Spe
i�
 Bran
hes option will default to the bran
h asso
iated with that segment.You 
an also assign 
olors to spe
i�
 elements with the ELEMENT-PARAMETER fun
tion, where COLOR
an be: 'RED, 'GREEN, 'BLUE, 'YELLOW, 'ORANGE, 'CYAN, 'PURPLE, 'BLACK, or 'WHITE. Forexample:(element-parameter *synapse-type* '
olor 'orange)(loop for segment in (segments-to-soma 234) do (element-parameter segment '
olor 'green))(element-parameter 'DR-HH '
olor '
yan)23.7 Light Synapse Re
eptive Field Graphi
sThe re
eptive �elds for light synapses 
an be drawn in perspe
tive by the appropriate sele
tion in the SynapseStimulus/RF Graphi
s submenu of the Drawing menu. The re
eptive �eld graphi
s shapes are determinedby various simple approximations of the 'SPATIAL-RF-FUNCTION 
omponent of the synapse type parameters(see the fun
tion GET-SPATIAL-RF-ARRAY). Conne
tion lines are drawn from the synapse to its RF, at aheight that 
an be spe
i�
 to the synapse type (default 100.0 um). The style of these lines is determined bythe global variables:*SYN-RF-CONNECTION-DASH* (default '(10 10), see linestyles.do
 for options)*SYN-RF-CONNECTION-THICKNESS* (default 0, see linestyles.do
 for options)*SYN-RF-CONNECTION-SHADING* (default 100, see linestyles.do
 for options)These may also be set from the histology submenus. The 
olor of the synapse marker on the soma or segmentis also the 
olor used for the RF, with a shading given by the global variable *SYN-RF-SHAPE-SHADING* (inper
ent, default 25). If *SYN-RF-SHAPE-SHADING* is 0, then only the outline of the RF is drawn.See the des
ription of SET-TYPE-GRAPHICS below.Synapse stimuli are drawn either behind or in front of the 
ell drawing, a

ording to the global variable*WHERE-SYNAPSE-STIMULUS-GOES* (:BACK or :FRONT). This may also be set in the synapse graphi
s menufor the 
urrent graphi
s window.set-mis
-histo-slots &key (win *standard�graphi
s�output*) (s
ale (if win (g�valuewin :s
ale) 3.0)) (
olorize (when win(g�value win :
olorize))) (ba
kground�
olor (if win (g�value win:ba
kground�
olor) opal:white)) (mark�all�synapses (when win(g�value win :mark�all�synapses))) (enable�marked�synapses(when win (g�value win:enable�marked�synapses))) (draw�all�synapse�rfs (when win(g�value win :draw�all�synapse�rfs))) (draw�synapse�rfs (whenwin (g�value win :draw�synapse�rfs))) (phi�deg (if (and win(g�value win :phi�deg)) (g�value win :phi�deg) 0.0)) (theta�deg(if (and win (g�value win :theta�deg)) (g�value win :theta�deg)0.0)) (draw�axons t) (draw�synapse�
xns t)
[Fun
tion℄

This is used for setting some basi
 graphi
s parameters without using the menus. e.g.:(SET-MISC-HISTO-SLOTS :s
ale 3.0 :phi-deg 90.0 :DRAW-AXONS nil)



23 HISTOLOGY GRAPHICS 134Angle args are in degrees, and s
ale arg is in mi
rons/pixel.23.8 ColorizationElement values may be displayed as 
olors in histology windows, both during a simulation and afterwards.This me
hanism in fa
t allows another way to spe
ify simulation data storage and plotting, in a manner
ompletely independent of the methods des
ribed in Se
tions 18 and 22.Enabling 
olorization during a simulation requires setting *COLORIZE-SIMULATION* to T. Data for allsegments and somas will also be saved on a sparse sampling grid when *ENABLE-SPARSE-DATA* (determinedby *COLORIZE-SIMULATION-STEP*, and a

essed by the fun
tion CURRENT-SPARSE-DATA-TIMES). If so, thenthe last simulation may be replayed using the fun
tion:replay-
olorized-simulation &key (start�time 0) (stop�time *user�stop�time*)(time�step 0.1) win (repetitions 1) (display�time t) (ele-ments (
ell�elements)) (data�type 'voltage) [Fun
tion℄The saved data may also be plotted with:plot-element-sparse-data elements &key (data�type 'voltage) (y�label "mv") [Fun
tion℄and dire
tly a

essed with:element-sparse-data element &optional data�type [Fun
tion℄This data is 
leared at the beginning of a new simulation.23.9 Bugs/FeaturesIf you try to draw too big a pi
ture, you may get a DRAWABLE-ERROR (Se
tion 39.5.1. This 
ould happen, forexample, when the"Size histology window to 
ells"option is marked T for a"Drawing s
ale (mi
rons/pixel):"value that is too small.
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entrations24.1 Initial Values for Voltages and Con
entrationsThe following me
hanism is useful for imposing a "steady-state" 
ondition on the 
ir
uit. Two variables maybe used to set initial node voltages and 
on
entration integrator 
on
entrations:*node-voltage-initializations* '() [Variable℄*
on
-int-initializations* '() [Variable℄The �rst is a list of pairs, the CAR's of whi
h are nodes, the CADR's of whi
h are the initial voltage to setthat node to, thus:((NODE-1 value) (NODE-2 value) ... (NODE-N value))where ea
h NODE-X is either a node or an element (soma or segment, name or stru
ture). *CONC-INT-INITIALIZATIONS*is a list of lists, the CAR's being 
on
entration integrators, and the CADR's being lists of 
ompartment initial
on
entrations to set that integrator to.The fun
tion:set-*node-voltage-initializations* [Fun
tion℄grabs the 
urrent node voltages and stores them in *NODE-VOLTAGE-INITIALIZATIONS*. Likewise, thefun
tion:set-*
on
-int-initializations* [Fun
tion℄grabs the 
urrent 
on
entration integrator values and stores them in *CONC-INT-INITIALIZATIONS*.The variables:*use-node-voltage-initializations* nil [Variable℄*use-
on
-int-initializations* nil [Variable℄enable the use of the initialization value lists. These options may be set by the Initialization Menu. Notethat the initial state of voltage and 
on
entration dependent gating parti
les are set by their steady statevalues determined by the initial values of the appropriate voltages or 
on
entrations.24.2 Virtual Holding PotentialsNormally, the voltage of ea
h node at the begining of the simulation is set to the appropriate reversal potentialof the leak 
ondu
tan
e. Voltage dependent elements may also referen
e a "virtual" holding potential at thebegining of the simulation.This is 
alled a virtual holding potential sin
e the a
tual voltage of the node is not
hanged. The e�e
t is as if the node was voltage 
lamped from negative in�nity time at the holding potential(and all other nodes 
lamped to either their virtual holding potential or their leak reversal potential), andthen at time 0 there was an instantaneous and zero duration voltage 
lamp to the leak reversal potential forall nodes.Virtual holding potentials may be set from the Initialization menu, or to set the virtual holding potentialfor an element use the fun
tion



24 INITIALIZATION OF VOLTAGES AND CONCENTRATIONS 136element-holding-potential element &optional (value nil value�supplied�p) [Fun
tion℄If VALUE (in mV) is supplied, this fun
tion sets the 'HOLDING-POTENTIAL parameter of the 
ir
uit nodeasso
iated with ELEMENT and returns VALUE (
onverted to double-
oat). Otherwise, it returns the
urrent value of the 'HOLDING-POTENTIAL parameter for the node, if that value has been set previously.To 
an
el the virtual holding potential, use:(element-holding-potential some-element NIL)Note that setting a virtual holding potential for an element will do the same for any other element at thesame node.24.3 Initial States for Gating Parti
lesBoth two-state (HH-type) and Markov gating parti
les 
an have expli
it initial 
onditions - see Se
tions 11.9 and 12.5.



25 MISCELLANEOUS 13725 Mis
ellaneousThis se
tion 
overs various fun
tions and ma
ros not dis
ussed elsewhere.25.1 Type Coer
ion Ma
rosA set of simple ma
ros are provided in Surf-Hippo for type 
oer
ion of single numbers and numeri
 se-quen
es. The following three ma
ros 
oer
e single number arguments to �xnums, single 
oats or double
oats, respe
tively:�x arg [Ma
ro℄s-
t arg [Ma
ro℄d-
t arg [Ma
ro℄These ma
ros take numeri
 sequen
e arguments and 
oer
e them to either lists or arrays of the indi
atedtype:�x-list arg [Ma
ro℄s-
t-list arg [Ma
ro℄d-
t-list arg [Ma
ro℄�x-array arg [Ma
ro℄s-
t-array arg [Ma
ro℄d-
t-array arg [Ma
ro℄
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riptTM Output26.1 Lo
king and Unlo
king Graphi
s WindowsThe global variable *LOCK-ALL-WINDOWS* (default NIL) when T 
auses all new windows (histology,plotting and information) to be lo
ked so that they will not be overwritten. The following fun
tions arerelated to this:lo
k-all-windows [Fun
tion℄unlo
k-all-windows [Fun
tion℄lo
k-window &optional (win *twin*) [Fun
tion℄unlo
k-window &optional (win *twin*) [Fun
tion℄unsti
k-windows [Fun
tion℄See also Se
tions C, D, E and 39.26.2 Window Visibility and ArrangingNormally, output windows (plotting and histology) will be automati
ally dei
oni�ed, raised and made visiblewhen needed. For automati
 runs, it sometimes 
onvenient to suppress the showing of output so that you
an do something else with the 
omputer. Setting the following global variables (all of whom have a defaultvalue of T) may then help:*RAISE-OUTPUT-WINDOWS* *DEICONIFY-OUTPUT-WINDOWS**UPDATE-OUTPUT-WINDOWS* *SHOW-OUTPUT-WINDOWS*See also Se
tion 27.10. For automati
 tiling of graphi
s windows, try the following fun
tion:arrange-windows &key (windows�per�row *arrange�windows�per�row*) winsuse�menu (reasso
iate�windows *reasso
iate�windows*)(reasso
iate�windows�sublist�length*reasso
iate�windows�sublist�length*)(window�tile�x�gap *window�tile�x�gap*) (window�tile�y�gap*window�tile�y�gap*) [Fun
tion℄
This fun
tion may also be 
alled from the Print Window Menu.26.3 Generating Posts
riptTM FilesPlot and histology windows may be stored as Posts
riptTM �les by typing CONTROL-p over the window,or by 
alling:



26 OUTPUT WINDOWS, POSTSCRIPTTM OUTPUT 139print-windows windows &key (lands
ape *ps�lands
ape�p*) (in
lude�title*print�windows�in
lude�title*) (what�to�do*print�windows�what�to�do*) (printer *printer*) (print�together*print�together*) dire
tory (�lename�suÆx *ps��lename�suÆx*) ar-range erase��les hard�
opy�s
reen use�menu (ex
lusion�list*print�windows�ex
lusion�list*) (in
lusion�list*print�windows�in
lusion�list*)
[Fun
tion℄

The printer is spe
i�ed by the string global variable:*PRINTER*The default value for this is taken from the PRINTER Unix environment variable, although there may besome bugs with this. You 
an also set this variable expli
itly, of 
ourse.There are several global variables whi
h e�e
t the Posts
riptTM �le format. When:*INCLUDE-FILENAME-AND-DATE-IN-PS-FILES*is T (default), then a small line of text is added to the printed page in
luding the �le name and the 
urrentdate and time.If you would like to remove this text from a Posts
ript �le (e.g. for later in
lusion as a text �gure), thenthe o�ending lines (whi
h may be removed from the �le with an editor) are framed by%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Start of lower right 
orner filename and data.......%% End of lower right 
orner filename and data....%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Other variables in
lude (see Referen
e Manual for details):*PS-POSITION-X* *PS-POSITION-Y**PS-SCALE-X* *PS-SCALE-Y**PS-LANDSCAPE-P* *PS-BORDERS-P* *PS-COLOR-P**PS-LEFT-MARGIN* *PS-RIGHT-MARGIN**PS-TOP-MARGIN* *PS-BOTTOM-MARGIN**LPR-PAPER-SIZE*



27 RANDOM HINTS 14027 Random Hints27.1 EXP-W-LIMITS Fun
tionsThe fun
tions EXP-W-LIMITS EXP-W-LIMITS-DOUBLE EXP-W-LIMIT-GENERIC provide an in-lined version ofEXP that saturates if the argument is too large or small. These fun
tions have been used at various pointsin the Surf-Hippo 
ode. When the global variable *NOTIFY-EXP-LIMIT* (default NIL) is non-NIL then amessage is printed when one of the EXP-W-LIMITS fun
tions punts.27.2 Debugging Calls to SIM-ERRORSprinkled through the Surf-Hippo 
ode are o

asional expli
it error 
he
ks, whi
h may 
all the fun
tion:sim-error &optional (message "") (abort�on�error *abort�on�sim�error*) [Fun
tion℄Normally this fun
tion will print out some information about the error and return to the Lisp top-level, avoid-ing a 
all to the Debugger (Appendix B). However, it may be useful to disable SIM-ERROR in order to exploitthe Lisp Debugger and tra
k down the error. To do this you must set the variable *ABORT-ON-SIM-ERROR*to NIL so that the 
all to SIM-ERROR does not go immediately to top-level.27.3 Choosing Parameters for Numeri
al IntegrationTry initial simulations (
urrent 
lamp) with weak numeri
al 
onstraints, for example start with a (large)�xed time step (e.g. 100 mi
rose
onds). The default values for the numeri
al method parameters are ratherstri
t, with the aim of assuring very good a

ura
y.Often, a fairly weak relative voltage error (the global variable *ABSOLUTE-VOLTAGE-ERROR*), for exampleon the order of 0.1mV, will give a good tradeo� between speed and a

ura
y. Sometimes, though, a too-largejump may be taken be
ause of a very small 2nd derivative, even with non-linear elements. The symptomfor this is an "unexpe
ted" dis
ontinuity in the voltage tra
e (obviously there is no stri
t 
riterium for this).In this 
ase, the glit
h may disappear with a small adjustment of *ABSOLUTE-VOLTAGE-ERROR* (either anin
rease or a de
rease).Voltage 
lamp (parti
ularly with non-ideal voltage sour
es) simulations tend to be mu
h more sensitiveto the resolution of the numeri
al method. For example, under voltage 
lamp �xed time step integrationsmay be very sus
eptible to os
illations. These may only be visible if the plot resolution is taken at everytime step - see the se
tion on Plot Resolution. For example, if the plot resolution is at the default 2 timesteps per plot sample, then it may appear that the 
lamp is "drifting" instead of os
illating. For 
ir
uitswith voltage 
lamp(s) it is best to use variable time steps, and to try various error 
riteria to 
he
k for the
onvergen
e of the simulation (e.g. setting *ABSOLUTE-VOLTAGE-ERROR* for the LTE-based time step from0.1mV to 0.001mV or less).27.4 Naming Cells And Their ComponentsSee also Se
tions 5.1 and 6.2.The stru
ture of the simulator is su
h that names of 
ertain 
lasses of obje
ts, spe
i�
ally 
ells, somas,segments, and all meta "X-type" 
lasses must have unique names. Also in general problems are avoided ifall other obje
ts have unique names as well.The root of this is with the name of the 
ell(s). When writing a fun
tion or a �le to 
reate a 
ell, a"good" (i.e. unused) name for the 
ell may be found at the beginning by the fun
tion:
he
k-
ell-name name &key (automati
�name��xing t) [Fun
tion℄This returns a string whi
h is the original NAME argument is there is no 
ell already de�ned with thatname. Otherwise, the fun
tion appends "-i", where i is an integer, to NAME in order to �nd a new name. IfAUTOMATIC-NAME-FIXING is nil, then a menu prompt is used to approve the new name. For example:
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ell ()(let* ((
ell-name (
he
k-
ell-name "Test-
ell"))(
ell (
reate-
ell 
ell-name))(soma (
reate-soma :
ell 
ell-name :diameter 31)));; Code that 
an expli
itly a

ess the CELL-NAME, CELL and SOMA lo
al variables.(....)))In fa
t, by default the CREATE-CELL fun
tion runs CHECK-CELL-NAME. Thus, here is a more 
ompa
t version(e.g. if you don't need to a

ess the 
ell dire
tly later in the fun
tion):(defun test-
ell ()(let ((soma (
reate-soma :
ell (
reate-
ell "Test-
ell") :diameter 31)));; Code that 
an expli
itly a

ess the SOMA lo
al variable.(....)))In this 
ase, note that the CREATE-CELL fun
tion returns the 
reated 
ell stru
ture. The a
tual name of the
reated 
ell, be
ause of the 
all to CHECK-CELL-NAME in CREATE-CELL, may be 
hanged from the original"Test-
ell" string. Note as well that CREATE-SOMA requires at least a single 
ell or 
ell name argument. Allthis means that in most 
ases, even with multiple invo
ations of the same 
ell 
ir
uit des
ription, a unique
ell name will be generated. This system is useful is you want to be able to add 
ell de�nitions togetherwithout taking 
are beforehand that the 
ell de�nitions all refer to unique names.For obje
ts that are added to a 
ell's membrane (
hannels, synapses, sour
es, et
.) the name of a givenobje
t is partly derived from the 
ell element that will re
eive the obje
t. Therefore, if all the 
ell elements(somas and segments) have unique names, then the rest of the 
ir
uit obje
ts will have unique names.Likewise, for both somas and segments, the name of their 
ell may be in
orporated into the element name:in the 
ase of segments when the global variable *ADD-CELL-NAME-TO-SEGS* is T. To help ensure that thisin
orporation is done when ne
essary (e.g. for unique element names) when there is more than one 
ell inthe 
ir
uit, the following steps are taken by the simulator when new 
ells are read in and 
reated.Another feature to ensure good names for segments is also a

omplished within CREATE-CELL. If thisfun
tion 
reates and assigns a new name to the new 
ell, then the assumption is that this 
urrent 
ell is a
opy of another 
ell, and the fun
tion automati
ally sets *ADD-CELL-NAME-TO-SEGS*. Subsequent 
alls toCREATE-SEGMENT then add the 
ell name to the segment name if the 
ell name is not at the beginning of thesupplied segment name.This pro
edure is not foolproof, sin
e it is possible, for example, for two entirely di�erent 
ell des
riptionsto use the same segment name. Thus the safest pro
edure is to always set *ADD-CELL-NAME-TO-SEGS* whenmulitple 
ell 
ir
uits are 
onstru
ted. This option appears in the 
ir
uit loading menus for 
onvenien
e.If you do try to load a 
ir
uit that will use an already assigned name, you will get an error similar tothis:Reading in 
ir
uit CA1-MAX-RED...; Loading #p"/usr/lo
al/surf-hippo/anatomy/
12861.
a1.spar
f".Error in fun
tion TRANSLATE-NTSCABLE-LIST:
reate-segment: segment 
a1_1-1-3 already defined, ignoringRestarts:0: [CONTINUE℄ 
ontinue1: [ABORT ℄ Return to Top-Level.Debug (type H for help)(TRANSLATE-NTSCABLE-LIST <Soma 
a1-soma>)Sour
e:; File: /usr/lo
al/surf-hippo/sr
/development/nts
able.lisp



27 RANDOM HINTS 142(CREATE-SEGMENT (CONSTRUCT-NTS-SEGMENT-NAME (NTH 0 SEGMENT-LIST))(COND (SOMA-PROXIMAL-LOCATION-AND-DIAMETER #)(BP-PROXIMAL-LOCATION-NAME BP-PROXIMAL-LOCATION-NAME)(T #)) CELL-NAME :RELATIVE-LOCATION ...)0℄ q* (surf)A solution is to type "Q" as above, and restart (surf). Reload the 
ir
uit, but this time set *ADD-CELL-NAME-TO-SEGS*to T via the loading menu. See also dis
ussion below re *ADD-CELL-NAME-TO-SEGS-FOR-TREE-DUMP*.27.5 Initialize or Not When Loading New Cir
uitThe global variable *INITIALIZE-BEFORE-NEXT-CIRCUIT* may be set NIL if you want to add subsequent
ir
uits without erasing already loaded 
ir
uits. This is handled automati
ally if you use the menus forloading. Therefore, if you are loading multiple 
ir
uit de�nitions with a s
ript, then be sure to exe
ute:(setq *INITIALIZE-BEFORE-NEXT-CIRCUIT* t)before loading the �rst 
ir
uit, and:(setq *INITIALIZE-BEFORE-NEXT-CIRCUIT* nil)after loading the �rst 
ir
uit.27.6 Saving Cell GeometriesIn some 
ases, for example after 
onsolidating a 
ell's dendriti
 tree, it is useful to save the new geometry.This may be done with the fun
tions:dump-tree-menu [Fun
tion℄dump-tree-list &key (
ells (
ells)) separate��les in
lude�membrane�elts
onvert�to�simple�names [Fun
tion℄where CELL is either a 
ell stru
ture or the name of a 
ell. These fun
tions write loadable Lisp �les thatde�ne fun
tions that whi
h re
reate the 
ell when loaded. Thus, the following pro
edure 
ould be used:1. Load original 
ell (Overall parameters, Load 
ir
uit menus).2. Consolidate 
ell geometry (Edit 
ir
uit elements - Examine/modify distribution of ele
trotoni
 lengthsmenus).3. Rename 
ell and/or 
ell type (Edit 
ir
uit elements - Edit names of 
ir
uit obje
ts menus).4. Dump transformed 
ell geometry to �le (Information management - Dump 
ell geometry to �le menus).5. Load geometry �le, whi
h in turn de�nes (and puts in the 
ompiled 
ir
uit 
atalog) a 
ir
uit fun
tionfor that new geometry (Overall parameters, Load Lisp �le menus).6. Load the new 
ir
uit fun
tion to re
reate the transformed 
ell (Overall parameters, Load 
ir
uit menus).Note that the saved geometry �les will only reprodu
e the 
ell geometry and the basi
 
ell type parameters.Cell elements su
h as 
hannels et
 will have to be added either with the menus, or the geometry �les maybe edited before loading, or the �les loaded as part of another s
ript �le.Also, this method preserves segment 'RI-COEFFICIENT values that are not equal to 1.0. This is importantfor dendriti
 trees that have been 
onsolidated as des
ribed in Se
tion 16.To ensure that the saved �le has unique segment names, the following variable is default T:
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ell-name-to-segs-for-tree-dump* t [Variable℄This may be 
hanged in the menu that prompts for dumping the tree.See also Se
tions 16, 17, and 3.27.7 Plot ResolutionThe default plot resolution, (the sample grid of 
omputed time steps for produ
ing plot data), is one plotpoint for every two time steps. In general, the fewer points plotted the faster the plotting and the less datathat needs to be stored for later use. This value is determined by the global variable *SAVE-DATA-STEP*(default 2). In some 
ases, it may be important to verify that the integration is not os
illating with a periodof 2 time steps. It will then be ne
essary to set *SAVE-DATA-STEP* to 1 to observe the os
illation, and notjust the "envelope". *SAVE-DATA-STEP* may also be done with the plot parameters menu.For simulations with a wide range of time s
ales, and in parti
ular if there is the possibility of abrupt
hanges in the time step, it is a good idea to set *SAVE-DATA-STEP* to 1. Otherwise, it is possible to misskey transition points.27.8 Resetting the Random SeedA �le named \random-state" is found in the lib dire
tory, whi
h supplies the random seed for the lispfun
tion RANDOM (stored in the global variable *RANDOM-STATE*). This seed may be reset and a

essed withthe following fun
tions, respe
tively:save-referen
e-random-state &optional �lename [Fun
tion℄get-referen
e-random-state &optional �lename [Fun
tion℄If the optional FILENAME arguments for these fun
tions are not supplied, then the afore-mentionedlib/random-state �le is used.27.9 Avoiding BloatIt is often useful to de�ne new global variables in the pro
ess of storing or analyzing data. However, after awhile if these variables hold a substantial amount of data, they may overload the memory. Assuming thatat some point the variables are no longer useful, they may be 
leared out by:
lear-user-variables &optional variables�to�keep [Fun
tion℄27.10 Avoiding PlotsWhen running long simulations with a lot of output, it may be useful to supress the visibility of theplots (assuming that they are going to printed or the data otherwise saved). This 
an be done by setting*HIDE-OUTPUT-WINDOWS* to T. The hidden windows may still be printed (using the PRINT-WINDOWS fun
tion,either automati
ally in your s
ript or intera
tively) as long as the variable OPAL::*PRINT-NON-VISIBLE-WINDOWS*is T (the default). Using *HIDE-OUTPUT-WINDOWS* set to T avoids display allo
ation errors whi
h 
an kill along-running session. Hiding plots with lots of data 
an also save signi�
ant time used when the windowsare refreshed.Note that in this 
ase, you 
an still know that the simulation is running by keeping the 
lo
k visible(*SHOW-TIME-REMAINING* set to T).



28 SYSTEM ISSUES 14428 System IssuesThis se
tion dis
usses some issues related to the intera
tion between Surf-Hippo and Unix.28.1 Running Unix Shell CommandsShell (
sh) 
ommand strings may be exe
uted from within Surf-Hippo with the fun
tion:shell-exe
 
ommand &optional (show�result *show�
sh�result*) [Fun
tion℄28.2 A

essing Unix Environment Variables - A Few Common PathnamesFrom Lisp you 
an a

ess environment variables via the global asso
iation list variable LISP::*ENVIRONMENT-LIST*.For example,* lisp::*environment-list*((:XNLSPATH . "/home/nets
ape/nls/") (:XKEYSYMDB . "/home/nets
ape/XKeysymDB")...(:BIBINPUTS . ".:/giga/lib/texmf/bibtex/bib") (:ARCH . "sun4"))*Thus, to get the value of SURFHOME, you would use:* (
dr (asso
 :SURFHOME lisp::*environment-list*))"/usr/lo
al/surf-hippo/"*Note that the global variable *SURFDIR* is set to the path for SURFHOME already:* *SURFDIR*"/usr/lo
al/surf-hippo/"*As des
ribed in Se
tion 2.10, there are a few globals like this, in
luding:*surf-home* nil [Variable℄*surf-user-home* "" [Variable℄*surf-user-dir* nil [Variable℄For example,* *Surf-user-dir*"/usr/lo
al/surf-hippo/"* *
ir
uit-dire
tory*"/usr/lo
al/surf-hippo/
ir
uits/"* *data-dire
tory*"/usr/lo
al/surf-hippo/data/"* *plot-dire
tory*"/usr/lo
al/surf-hippo/plot/"



28 SYSTEM ISSUES 14528.3 Surf-Hippo Dire
toriesThe more important subdire
tories in Surf-Hippo are as follows:� anatomy Colle
tion of original and 
onverted 
ell anatomy �les from a variety of external 
ontributors.� bin Binary Surf-Hippo Lisp �les, under various 
atetegories. Normally these �les are not ne
essarysin
e the large image �le in
ludes them: they are used when the system is re
ompiled for generating anew image.� 
ir
uitsA 
onvenient pla
e for putting Lisp �les of model 
ir
uits or of general 
ode for later referen
e.Default dire
tory for the *CIRCUIT-DIRECTORY* global variable. These �les 
an be parti
ularly usefulwhen running a series of simulations dire
tly from Lisp (i.e. via the interpreter), in whi
h 
ase theyshould be loadable dire
tly into Lisp, or 
ontain forms whi
h are loadable. Of parti
ular interest is:{ demos Various demo �les for running simulations.� 
mu
lThe lisp exe
utables in this dire
tory are spe
i�
 to ma
hine ar
hite
tures and operating systems,as is the asso
iated image �le (in the lib dire
tory). The �le in this dire
tory that is a
tually used isspe
i�ed in the exe
utable surf-hippo s
ript in the top-level surf-hippo dire
tory.� data The default data dire
tory. If the Unix environment variable SURFUSERHOME is de�neddi�erently than SURFHOME, then simulation data output will default to a data subdire
tory underSURFUSERHOME (see above and Se
tion 2.10).� plot The default plot dire
tory. Another plot dire
tory may be referen
ed, a

ording to the value ofSURFUSERHOME, in the same way as explained for the data dire
tory above.� do
 Various do
umentation, in
luding this manual.� lib Some �les for system 
on�guration information.� logs Automati
 system logs, for example generated when the global variable *WRITE-LOG-FILE* is setto T.� mis
 Mis
ellaneous useful user information. 
hanges-x.do
 �le(s) in
lude non-ba
kward 
ompatible
hanges in the 
ode. In parti
ular, this dire
tory in
ludes:{ ilisp Ilisp �les.{ loaders Files for system 
ompiling. Not normally needed by the user.{ nts
able Dire
tory of nts
able 
ode. Only needed if you need to re
ompile nts
able for your Unixbox.{ rallpa
k v1.1 The Rallpa
k ben
hmark �les.� sr
 The Surf-Hippo sour
e �les. Important subdire
tories are:{ 
mu
l-fixes{ garnet-fixes{ gui The graphi
 user interfa
e 
ode for Surf-Hippo.{ hippo
ampus Cell and me
hanism �les spe
i�
 to hippo
ampus.{ parameters Wide variety of membrane me
hanism parameters (
hannels, synapses, et
.) takenfrom the literature.{ rallpa
k Surf-Hippo �les for running the Rallpa
k ben
hmarks.{ retina Cell and me
hanism �les spe
i�
 to retina.{ roylan
e-
lmath Copy of the Roylan
e numeri
al library distribution.{ sys The Surf-Hippo system �les.



29 PROGRAMMING HINTS 14629 Programming HintsRandom material on 
ompiling, programming, and su
h.29.1 Relevant Fun
tions for TOPLOADed FormsCir
uit fun
tions that de�ne a new 
ir
uit, for example that will be loaded from within TOPLOAD, should not
all fun
tions for drawing the 
ir
uit. These must be used only after a new 
ir
uit is loaded. For example,if FOO-CIRCUIT is(defun foo-
ir
uit ()(
reate-
ell "Foo")(just-draw))This won't get the 
ir
uit drawn:* (topload 'foo-
ir
uit)But by de�ning(defun foo-
ir
uit ()(
reate-
ell "Foo"))and(defun foo ()(topload 'foo-
ir
uit)(just-draw))Then 
alling (FOO) will both load the 
ir
uit and then draw it. Likewise, any fun
tions whi
h depend onelement lo
ation should only be 
alled after the 
ir
uit has been loaded (as above), and \pro
essed".29.2 De�ning New Variables or Fun
tionsWhen de�ning your own variables or fun
tions, it is a good idea to make sure that Surf-Hippo does notalready use the symbol that you want. The easiest way to 
he
k this by hand is to use DESCRIBE, e.g.:* (des
ribe 'surf)SURF is an external symbol in the SURF-HIPPO pa
kage.Fun
tion: #<Fun
tion SURF {23E36A1}>Fun
tion arguments:(&optional 
ir
uit (automati
 *automati
-run*) (load-only *load-only*)(keep-tra
k-of-time-for-auto-run nil))Its defined argument types are:(&OPTIONAL T T T T)Its result type is:(MEMBER NIL T)On Monday, 1/29/96 05:10:36 pm EST it was 
ompiled from:/usr/lo
al/surf-hippo/sr
/sys/sim.lispCreated: Saturday, 1/27/96 04:55:00 pm EST* (des
ribe '*user-stop-time*)*USER-STOP-TIME* is an internal symbol in the SURF-HIPPO pa
kage.It is a spe
ial variable; its value is 200.0.200.0 is a SINGLE-FLOAT.Spe
ial do
umentation:The time to end the simulation, in millise
onds.* (des
ribe '
ons)CONS is an external symbol in the COMMON-LISP pa
kage.
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tion: #<Fun
tion CONS {1248819}>Fun
tion arguments:(se1 se2)Fun
tion do
umentation:Returns a list with se1 as the 
ar and se2 as the 
dr.Its de
lared argument types are:(T T)Its result type is:CONSOn Wednesday, 11/2/94 02:20:25 am EST it was 
ompiled from:target:
ode/list.lispCreated: Tuesday, 11/1/94 01:34:44 pm ESTComment: $Header: list.lisp,v 1.18 94/10/31 04:11:27 ram Exp $* (des
ribe 'foo)FOO is an internal symbol in the SURF-HIPPO pa
kage.*In these examples, the symbol 'SURF has been used to referen
e a fun
tion (whi
h does not ne
essarilypre
lude its use as a global variable), and the symbol 'USER-STOP-TIME is used as a spe
ial variable (whi
has well does not ne
essarily pre
lude its use as a fun
tion). The symbol 'CONS, of 
ourse, is de�ned as afun
tion in the COMMON-LISP pa
kage. 'FOO, however, is not used by Surf-Hippo, so it would be safe touse it for something new. Note that you must use the single quote to denote a symbol.Another, sure way to safely de�ne new symbols is to do so under your own pa
kage, whi
h in turn shoulduse the SURF-HIPPO pa
kage. Su
h a pa
kage 
ould be 
reated as follows:* (make-pa
kage "My-Pa
kage-Name" :use '("SURF-HIPPO"))#<The My-Pa
kage-Name pa
kage, 0/9 internal, 0/9 external>*In this 
ase, it is a good idea to have some familiarity with the 
on
ept of pa
kages in Lisp.29.3 Stru
ture Slot A

essMost lisp 
ode, for example �les whi
h de�ne various 
ir
uits and elements, may be loaded into su

essiveversions of Surf-Hippo without problem and without re
ompilation. The main ex
eption to this is when 
odemakes dire
t referen
es to stru
ture slots via a

essor fun
tions. For example:(setf (
hannel-gbar-ref (element "Hippo-soma-NA1") 0.1))CHANNEL-GBAR-REF is an a

essor for CHANNEL stru
tures, 
reated with the DEFSTRUCT form. If your 
odeuses stru
ture a

essors, then the 
ode must be re
ompiled before loading into a new version of Surf-Hippo.In general, we have in
luded enough ways to a

ess stru
ture slots so that this me
hanism is more or lesstransparent. These fun
tions should be used in lieu of dire
t referen
e to stru
ture slots in your 
ode.29.4 Compiling Individual Sour
e Dire
toriesLoading surf-hippo/mis
/loaders/main-
ompilerby default 
ompiles all the dire
tories under surf-hippo/sr
.Loading the following �les restri
ts the 
ompile to spe
i�
 dire
tories:surf-hippo/mis
/loaders/
ompile-
mu
l-fixes.lispsurf-hippo/mis
/loaders/
ompile-development.lispsurf-hippo/mis
/loaders/
ompile-garnet-fixes.lispsurf-hippo/mis
/loaders/
ompile-gui.lispsurf-hippo/mis
/loaders/
ompile-hippo
ampus.lispsurf-hippo/mis
/loaders/
ompile-parameters.lispsurf-hippo/mis
/loaders/
ompile-roylan
e-
lmath.lispsurf-hippo/mis
/loaders/
ompile-sys.lisp
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iesThere are three reasons that one �le may depend (require) the prior 
ompilation of another �le - eitherthe other �le de�nes a stru
ture (only sr
/sys/stru
tures.lisp), de�nes a ma
ro, or de�nes an in-lined fun
tion. The various xx-loader �les take into a

ount the most typi
al examples of the �rst andse
ond 
ase, e.g. sys-loader.lisp for
es a 
ompile of all the sour
e �les if either stru
tures.lisp orstru
ture-ma
ros.lisp has been 
hanged. On the other hand, it is the responsibility of the user to makesure that any other dependen
ies are respe
ted when re
ompiling Surf-Hippo.29.6 Pro�ling Over
owTrying to pro�le 
ode after a long session 
an sometimes give the following error:(profile-all)...Type-error in KERNEL::OBJECT-NOT-TYPE-ERROR-HANDLER:671398848 is not of type (UNSIGNED-BYTE 29)Restarts:0: [ABORT℄ Return to Top-Level.Debug (type H for help)("LAMBDA (PROFILE::NAME PROFILE::CALLERS-P)"(-70.0 -70.0 -69.94982 -69.91509 -69.871124 ...)(0.0 1.4930964e-5 5.033907 10.000012 10.0021105 ...) 0.1 2359472 ...)Sour
e: (- (PROFILE::TOTAL-CONSING) PROFILE::START-CONSED)0℄The solution is to reset the g
 (garbage 
olle
tor) 
ount:(setq lisp::*total-bytes-
onsed* 0)29.7 Memory Diagnosti
s - Useful Fun
tions(vm::instan
e-usage :dynami
 :top-n nil)INSTANCE-USAGE is an external symbol in the SPARC pa
kage.Fun
tion: #<Fun
tion SPARC:INSTANCE-USAGE {12FB6E1}>Fun
tion arguments:(spa
e &key (top-n 15))Fun
tion do
umentation:Print a breakdown by instan
e type of all the instan
es allo
ated inSpa
e. If TOP-N is true, print only information for the the TOP-N types withlargest usage.Its defined argument types are:((MEMBER :STATIC :DYNAMIC :READ-ONLY) &KEY (:TOP-N (OR FIXNUM NULL)))Its result type is:(VALUES)On Wednesday, 11/2/94 02:41:34 am EST it was 
ompiled from:target:
ode/room.lispCreated: Tuesday, 11/1/94 01:35:35 pm ESTComment: $Header: room.lisp,v 1.24 94/10/31 04:11:27 ram Exp $
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uit and Simulation Names - Time StampsThe 
ir
uit name (the global variable *CIRCUIT*) is determined by one of several ways, in des
ending priority:1. Set to the �rst argument of the SURF fun
tion (if used).2. Set to the fun
tion name that de�nes the 
ir
uit (spe
i�ed in the 
ir
uit loading menu, or when theglobal variable *INPUT-IS-FUNCTION* is T).3. Set to the �lename of the �le that de�nes the 
ir
uit (spe
i�ed in the 
ir
uit loading menu, or when*INPUT-IS-FUNCTION* is NIL).Simulation names (the global variable *SIMULATION-NAME*) are automati
ally generated or updated when-ever a new simulation is run (for example, if using the menu interfa
e, whenever "Run simulation (immedi-ately)" is 
hosen from the main menu), as follows:(setq *time-stamp* (round (/ (- (get-universal-time) *universal-time-
onversion-fa
tor*) 1d1)))With the above assignment, the basi
 time stamp 
hanges every 10 se
onds. If there is an N th subse-quent simulation before this time stamp 
hanges, the a
tual time stamp string will be 
omprised of thetime stamp followed by \+N". Then, the name of the 
urrent simulation, given by the string variable*SIMULATION-NAME*, is 
omprised of the value of *CIRCUIT*, a \-", and the a
tual time stamp. The fun
-tion DECODE-TIME-STAMP will de
ode the a
tual time stamp 
omponent of a simulation name, for example:* (ENCODE-TIME-STAMP)"17988444+4"* (DECODE-TIME-STAMP)Monday, 5/1/00 05:40:40 pm [-1℄ (fourth in this 10 se
ond period)The global variable *UNIVERSAL-TIME-CONVERSION-FACTOR* is used to redu
e the length of the integerreturned by the fun
tion GET-UNIVERSAL-TIME, sin
e we don't need dates previous to 1994. Make sure notto run any simulations overnight on De
ember 31, 1999 (;-}).31 Graphi
s Window NamesThe titles of graphi
s windows (e.g. plot and histology) are derived from the 
urrent simulation name when�rst 
reated, for example "basi
-tree-12487402: Voltages". Subsequent output to an existing window updatesthe window title, i.e. to re
e
t a new simulation name.



32 ADAPTIVE TIME STEP 150Additional EÆ
ient Computation of Bran
hed Nerve Equations:Adaptive Time Step and Ideal Voltage ClampThis se
tion is adapted from the arti
le of the same name, published in the Journal of Com-putational Neuros
ien
e (v8(3), pp.209-225, 2000).Compartmental approximations of biophysi
ally detailed neuron models, where the bran
hing 
able stru
-ture of the 
ell approximated by a series of isopotential 
ompartments inter
onne
ted with resistors, are nowa fundamental te
hnique in 
omputational neuros
ien
e (Segev et al., 1998).Many numeri
al methods spanning a wide range of 
omplexity may be used to solve the resulting systemsof partial di�erential equations (Mas
agni and Sherman, 1998), However, the des
riptions by Hines (1984)of O(n) integration of tree 
ir
uit topologies, as naturally found in individual neurons, and mid-step solvingof time-dependent non-linear elements (e.g. voltage-dependent gating parti
les), have been found to be quitee�e
tive despite their relative simpli
ity (Hines and Carnevale, 1995; implemented in the simulator pa
kageNEURON, Hines, 1992). These 
ontributions by Hines have been 
ru
ial for the in
reasing appli
ation ofbiophysi
ally and anatomi
ally detailed 
ompartmental neuron models.In the following two se
tions I will present two straightforward improvements on the methods introdu
edby Hines. These methods in
lude re
asting the system equations to allow adaptive time step integration,and a reordering of the 
ir
uit matrix to allow ideal voltage 
lamp of arbitrary nodes.Sin
e analyti
al statements 
on
erning the stability of adaptive time step integration are la
king (Vla
hand Singhal, 1983), in the su

eeeding se
tion I will present several simulations demonstrating the stabilityand 
onvergen
e of the presented methods, using a standard Hodgkin-Huxley axon model. Example 
ode isgiven in Appendix H.32 Adaptive Time StepWe �rst review the solution of the 
ir
uit equation as des
ribed by Hines. The method, whi
h uses alternateimpli
it and expli
it integration steps, and whi
h is equivalent to the Crank-Ni
olson method, is se
ond order
orre
t in time and spa
e and numeri
ally stable.Given (see Figure 4):� tx, the time grid for the stored node voltages� t(n�1), tn, t(n+1); the last time, 
urrent time and predi
tion time, respe
tively.� �tn = t(n+1) � tn, the 
urrent time step� t0x, the staggered time grid for the midstep evaluation of parti
le states, inputs and node voltages,where t0(n+1) = tn +�tn=2In the following dis
ussion, the stored values of state variables at the nth time step will be notated with thesubs
ript n, e.g. Vn (= V (tn)) for voltages, and xn (= x(t0n)) for gating parti
les.Consider a 
ompartmental 
ir
uit model with N nodes. The impli
it phase of the solution at ea
h timestep tn ! t(n+1) 
onsists of solving the following matrix equation for the node voltage ve
tor V(t0(n+1)) atthe midstep, given the known voltages at the 
urrent time step, Vn:(Almost) Tri-diagonal matrixz }| {(G(t0(n+1))� (2=�tn �CI)) � Solve forz }| {V(t0(n+1)) = �2=�tn �CTVn+ GE(t0(n+1))+ I(t0(n+1)) (8)Where, for the node admittan
e matrix G (Desoer and Kuh, 1969),



32 ADAPTIVE TIME STEP 151Gij = �gij ; i 6= j= NXk=1 gik +X gelt(t0(n+1)); i = j (9)where gij is the 
able 
ompartment axial 
ondu
tan
e between nodes i and j. Similarly, for the ve
torGE(t0(n+1)), GEi = X gelt(t0(n+1))�Egelt (t0(n+1)) (10)Thus, gelt refer to the (possibly time-dependent) membrane 
ondu
tan
es (leak, 
hannels, synapses) betweena given node and ground, and Egelt refer to the appropriate reversal potentials. The sums of gelt in Equa-tions 9 and 10 are over all membrane 
ondu
tan
e elements 
onne
ted to node i. Again, note that these
ir
uit elements are evaluated at the staggered grid points t0(n+1). For the ve
tor C, Ci is the membrane
apa
itan
e of node i. I is the identity matrix. For the ve
tor I, Ii represents any grounded 
urrent sour
e(or sum of sour
es) 
onne
ted to node i, evaluated at time t0(n+1). Sin
e the 
ompartmental model of eithera single neuron or a network of neurons (without gap jun
tions) des
ribes a tree toplology, the solution ofEquation 8 is an O(N) operation (Hines, 1984).The expli
it phase of the solution to �nish the time step evaluation is then given by:V(n+1) = 2V(t0(n+1))�Vn32.1 Solution of Non-linear Condu
tan
es on a Staggered Time GridThe staggered time grid evaluation of the Hodgkin-Huxley gating variables is O(�t2) a

urate withoutinteration be
ause these variables are not instantaneous fun
tions of voltage (Hines, 1984, Mas
agni andSherman, 1998). This 
ondition holds for ohmi
 models of pore 
ondu
tion (e.g. the 
lassi
al Hodgkin-Huxleydes
ription): permeation models of pore 
ondu
tion that are based on formulations su
h as the 
onstant-�eldequation are another matter sin
e the basi
 
ondu
tion term is an immediate non-linear fun
tion of voltage.For Hodgkin-Huxley ohmi
 
hannels, the 
ontribution of a given 
hannel to the 
ir
uit matrix is given by theprodu
t of the 
hannel's maximum 
ondu
tan
e and the ensemble of gating parti
les. In prin
iple a small-signal linearization of a 
onstant-�eld permeation 
hannel 
ould be in
orporated into the matrix in a similarmanner, taking 
are to adjust the apparent 
hannel \reversal potential" a

ordingly in the matrix equation.Another approa
h is to treat the 
hannel as a voltage-dependent 
urrent sour
e, adding its 
ontribution tothe right-hand side of Equation 8.32.2 Integration of Parti
le StatesWe now 
onsider the solution of Equation 8 using an adaptive time step. The mid-step 
omputation ofvoltage-dependent state variables may be re
ast as follows. The problem is to solve the di�erential equationfor a gating parti
le x: _x = x1(V )� x�x(V ) (11)on the staggered time grid t0n, de�ned earlier. For se
ond-order a

ura
y this solution requires the values ofx1(V ) and �x(V ) at the midpoints of the staggered grid. If the time step is �xed, these midpoints map ba
kto the original time grid: thus, solving for x(t0(n+1)) referen
es the (known) node voltage Vn. However, for anadaptive time step, the midpoint of the staggered grid in general is not equal to tn, but must be 
al
ulatedas a fun
tion of the present and last time steps of the original grid (Figure 4). We �rst derive the time stepfor the staggered grid:
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Figure 4: Time grids for evaluation of node voltages, gating parti
le states and inputs, as des
ribed in the text.



32 ADAPTIVE TIME STEP 153�t0n = t0(n+1) � t0n = �tn +�t(n�1)2Letting n+ 12 � n0, the staggered grid midpoint time may be expressed as:t0n0 = t0n + �t0n2The 
orresponding voltage 
an be obtained by simple regression from t0n:V (t0n0) = V (t0n) + _V (t0n)� �t0n2where V (t0n) = Vn + V(n�1)2_V (t0n) = Vn � V(n�1)�t(n�1) (12)Making the following dis
retizations: x(t0n0 ) = x(n+1) + xn2_x(t0n0) = x(n+1) � xn�t0n (13)We now solve Equation 11 at t0n0 . Letting �x = �x(V (t0n0)) and x1 = x1(V (t0n0)), after some algebra wearrive at the following solution for x(n+1):x(n+1) = [x1 ��t0n℄� xn[�x ��t0n=2℄�x +�t0n=2 (14)As pointed out be Hines, the voltage-dependen
ies of the parti
le kineti
s may be stored in lookup tables foreÆ
ien
y - in this 
ase, tables for x1(V ) and �x(V ) are stored. An equivalent formulation to Equation 14may be made in terms of the rate 
onstants �x and �x asso
iated with Equation 11 (
f. Equation 9 inHines, 1984), but the form given above is perhaps more 
lear sin
e in the latter 
ase tables for �x(V ) and�x(V )��x(V )2 must be generated. In pra
ti
e, additional 
omputational savings may be made by 
al
ulatingV (t0n0) only for those 
ir
uit nodes whi
h have voltage-dependent elements, and only on
e, at the beginningof ea
h time step, su
h that the result may be used by multiple elements on a given node.We may note that Equation 14 requires three additions, one multipli
ation and one division. This
ompares with the single multipli
ation and addition required in the 
ase of a �xed time step (ibid.), wherethe (known) time step may be in
orporated in the lookup tables. We will return to this point in thedis
ussion.32.3 Time Step Determined by LTE of Node Voltages and Parti
le StatesThe time step during the integration is determined a

ording to its relation to the trun
ation error. Sin
ethe Crank-Ni
olson method is �rst order this error is given by the se
ond term of the Taylor series expansionof the solution, and is 
alled the linear trun
ation error (LTE). Thus, after evaluation of the 
ir
uit at ea
htime step, an estimate of the LTE for the 
ir
uit's state variables are determined. For ea
h state variablean estimate of the se
ond derivative at the midpoint between the 
urrent time and the two time steps ba
k(note that for a �xed time step this 
orresponds to the last time step) is made by 
onsidering the knownvalues of the �rst derivatives on the appropriate time grid.In pra
ti
e, the maximum of the the estimated errors for, respe
tively, all the 
onsidered node voltages(see below), all 
hannel gating parti
le states, and all 
on
entration integrator 
on
entrations are examined.These maximum errors are 
ompared with user-spe
i�ed maximum errors, and if any are ex
eeded then the



32 ADAPTIVE TIME STEP 154time step is repeated with a smaller step, determined by the maximum LTE at the 
urrent step. If all errorsare within the user-spe
i�ed bounds, then the integration moves on, now with the next step determined bythe maximum LTE.Here we �rst des
ribe the derivation for the LTE of the various state variables, and then we show howthese estimates are translated into the next time step.The LTE for the predi
ted node voltage V(n+1), LTEV , is given by:LTEV = �V (t0n0)2 �t2n= _V (t0(n+1))� _V (t0n)2(t0(n+1) � t0n) �t2nwhere the expression for _V (t0n) was given in Equation 12. Letting the maximum a-priori allowed node voltageerror be given by �Vmax, the maximum relative voltage error �Vrel is given by:�Vrel = LTE�V�Vmaxwhere LTE�V is the maximum LTEV over all 
onsidered node voltages.For 
on
entration integrator systems, the 
orresponding LTEC may be handled in an entirely analagousmanner as for the node voltages, assuming that the 
on
entrations are evaluated on the same time grid(this is the 
ase for Surf-Hippo, with the default integration method for 
on
entrations being a fully impli
itmethod). In this 
ase, the above equations may be applied as is, with the voltage variables repla
ed with
on
entration variables; given a user-spe
i�ed maximum allowed 
on
entration error �Cmax, the importantresulting measure is �Crel.For the integration of gating parti
les, the linear trun
ation error LTEx for the predi
ted state valuex(n+1) (o

uring at time t0(n+1)) is derived as follows. Letting t00 be midway between the last two midpointst0(n�1)0 and t0n0 of the staggered grid, then:LTEx = �x(t00)2 �t02n= _x(t0n0)� _x(t0(n�1)0)2(t0n0 � t0(n�1)0) �t02nwhere the expression for _x(t0n0) was given in Equation 13. Now, letting the maximum allowed parti
le errorbe given by �xmax, the maximum relative parti
le error �xrel is given by:�xrel = LTE�x�xmaxwhere LTE�x is the maximum LTEx over all the gating parti
les in the 
ir
uit.We now derive the maximum allowed time steps 
orresponding to the di�erent LTEs. Given the maximumrelative voltage error �Vrel, the maximum time step allowed by the node voltages, �tVmax, is given by:�tVmax = �tnq�Vrel (15)A similar parameter, �tCmax, determined by the maximum relative error in the 
on
entrations, �Crel, may beestimated in exa
tly the same manner.For the gating parti
le error, sin
e LTEx is a fun
tion of both �tn and �t(n�1) (via �t0n), determiningthe 
orresponding maximum allowed time step �txmax is a bit more 
ompli
ated than �tVmax. Thus, weobtain:



32 ADAPTIVE TIME STEP 155�txmax = max 2�t0np�xrel ��tprev ; �txmin! (16)where the �rst term on the right depends on whether or not the integration step will be repeated:�tprev = � �t(n�1) Time step repeated�tn Integration advan
esNote, however, that when the time step must be repeated, the �rst term on the right of Equation 16 maybe less than 0 (when p�xrel � �tn+�t(n�1)�t(n�1) ). Thus, a lower (positive) bound (�txmin) must be made, asindi
ated.Finally, if the largest of the maximum relative errors (�Vrel, �xrel and �Crel) is greater than one, then the
urrent time step is repeated; otherwise the integration moves forward. In either 
ase, the new time step istaken as: �tn = min ��tVmax; �tCmax; �txmax� (17)32.4 Node Voltages for Consideration of LTEVAt any given time during the simulation, the node with the largest error must be one that has some inputasso
iated with it, e.g. a sour
e, 
hannel, or synapse. All other nodes are driven by their neighboring nodes,and sin
e the 
apa
itan
e of ea
h node is non-zero, then the response of a node driven by the voltage of aneighbor will always be slower than the neighbor's voltage. Therefore, for estimating the maximum LTEV ,we need only 
onsider nodes with inputs; at the beginning of the simulation a list of all nodes with a
tivemembrane elements may be 
onstru
ted for this purpose. One ex
eption to this rule is in the 
ase of idealvoltage 
lamp simulations, to be des
ribed below: here the node with the input is a
tually removed from the
ir
uit, and 
opies of the voltage sour
e are transferred to adja
ent 
ir
uit nodes. Thus, these nodes maynow be 
onsidered to have \inputs", and are in
luded in the LTEV 
al
ulation.32.5 Time Step FudgeAlthough the determination of the time step as outlined above does the best possible (�rst-order) job basedon the past behaviour of the 
ir
uit, 
learly it may underestimate the resulting error for the next time step.This results in a tradeo� between the total number of time points during the integration, and any additionaliterations that result from underestimating the LTE.One method for improving the tradeo� is by introdu
ing a fudge fa
tor "�t, less than or equal to one,whi
h is used as a 
oeÆ
ient in the right hand side of Equations 15 and 16. In general, as "�t be
omessmaller, the number of time points will in
rease and the number of iterations will be redu
ed. After a 
ertainpoint for a small enough "�t, the number of iterations will start to in
rease; in general "�t should be set tominimize the number of iterations. In Figure 5, this tradeo� suggests an optimal value for "�t to be about0.8.32.6 BreakpointsFor adaptive time step integration, breakpoints are time points that the simulation must in
orporate inaddition to those 
hosen by the LTE-based algorithm des
ribed above. In general a breakpoint is 
hosenbe
ause there is a priori knowledge of some input whi
h begins or 
hanges abruptly at that time. Thismakes less work for the adaptive time step, sin
e without this information the initial stepping would morethan likely en
ounter the input sometime after its initiation, and thus may be for
ed to ba
kup if the inputwas too large at the �rst attempted time point that "saw" the input or the 
hange in the input. The result(in general) with using breakpoints then is fewer overall iterations and a solution that is less likely to have"ringing". Breakpoints also avoid the situation in whi
h an abrupt and short input might be 
ompletelymissed by large time steps determined during a previous period of low a
tivity.



33 IDEAL VOLTAGE CLAMP 156
Iterations
Time Points

#

0

2000

4000

6000

Fudge Factor
0.4 0.6 0.8 1.0Figure 5: Total iterations and time points vs adaptive time step fudge fa
tor for simulations of repetitive �ringas shown in Figure 8. In all the adaptive time step simulations shown here the fudge fa
tor "�t is set to 0.95;although in general a value about 0.8 is optimal, the higher value is taken in order to deemphasize this fa
tor in
omparing the adaptive versus �xed time step method.Thus, prior to a simulation, breakpoints are added for any pulse-based sour
e and for at the onsets ofany autonomous pro
esses, su
h as event driven synapses. During a simulation new breakpoints may alsobe generated with the evaluation of event-based elements, in
luding axons and voltage-dependent synapses.When the simulation is evaluated at a breakpoint, the subsequent time step is taken to be an user-de�nedminimum step, unless this advan
e takes the integration beyond the next breakpoint, in whi
h 
ase the nextbreakpoint determines the time step.In Surf-Hippo, element type de�nitions (see Appendix H) may optionally in
lude a spe
i�
ation for thein
lusion of breakpoints referen
ed to that element's onset time. For example, a synapse type de�nition,whi
h in
ludes the time 
ourse of the 
ondu
tan
e 
hange, may spe
ify (a list of times in millise
onds, with theparameter keyword SPECIFIED-WAVEFORM-BREAKPOINTS) that whenever one of its synapses is triggered, thenone or more extra breakpoints (referen
ed to the onset of the synapti
 
ondu
tan
e 
hange) are automati
allyadded to the global breakpoint list of the 
urrent simulation. In addition, trigger events for event drivensynapses 
ause a breakpoint to be added at a delay after the event that is one half the duration of the de�ned
ondu
tan
e waveform.32.7 Other Time Step ConstraintsUnder some 
onditions it may be useful to impose an overall maximum time step. For example, a maximum
ould be imposed during the evaluation of some element types, in parti
ular those that are driven by ana-priori waveform. In these 
ases (parti
ularly if the waveform is not well-behaved), the global maximumtime 
ould be set to a value appropriate for the spe
i�
 waveform.33 Ideal Voltage ClampIdeal voltage 
lamp means that a given node j (or nodes) in the 
ir
uit in
ludes a 
ontrolled voltage sour
e,V sj (t), 
onne
ted to ground. However, when the 
ir
uit is des
ribed in the form given by Equation 8, thisprevents a solution for V(t0(n+1)) sin
e now there are more equations than unknowns (the value of Vj(t0(n+1)),where node j is voltage 
lamped, is known and given by V sj (t0(n+1))).One solution is to make the voltage 
lamp non-ideal by adding a series resistan
e RSour
e to V sj , so thatthe voltage sour
e and resistor are handled like any other membrane element and asso
iated reversal potential



34 RESULTS OF ADAPTIVE VERSUS FIXED TIME STEP, AND IDEAL VERSUS NON-IDEAL VOLTAGE CLAMP157on the right side of Equation 8. However, although this allows the evaluation of voltage 
lamp within theoriginal 
ir
uit (and simulator) stru
ture, this strategy has two disadvantages. First of all, the smaller thevalue of RSour
e the more unstable the integration be
omes, ne

esitating smaller time steps. This arisesbe
ause as R�1Sour
e be
omes mu
h larger than the gelts, the sti�ness of the resulting system of equationsin
reases. Se
ond, although voltage 
lamp 
ir
uits in real life are not ideal (e.g. they in
lude a non-zerosour
e impedan
e), it is useful to examine the 
on
eptually simpler ideal 
ase in simulations separately fromthat of the more realisti
 
ase.These problems may be avoided by transfering 
opies of the voltage sour
e V sj to a grounded membranebran
h element of all nodes i 
onne
ted to j, ea
h of whi
h in
ludes a series 
ondu
tan
e given by the axial
ondu
tan
e between i and j, gij (see Figure 6). In addition, the original 
onne
tion between i and j via gijis eliminated. This pro
edure results in an invertible 
ir
uit matrix whi
h is of order N � 1. The stability(and sti�ness) of the resulting 
ir
uit is similar to that of the original 
ir
uit, sin
e there are no additional(large) terms to the node admittan
e matrix, 
ontrary to the 
ase for the non-ideal voltage 
lamp simulation.With respe
t to the topology of the 
ir
uit, this pro
edure may be thought of as 
utting the tree into twoor more subtrees, depending on how many nodes are 
onne
ted with j. Sin
e the removal of any subgraphof a tree topology nevertheless results in one or more tree topologies, the original node ordering and eÆ
ientinversions as des
ribed by Hines is still appli
able, in this 
ase to the new, smaller trees.The only remaining problem is the 
al
ulation of the 
urrents through the membrane elements asso
iatedwith node j (e.g. 
hannels, synapses, membrane leak and 
apa
itan
e) and the total 
urrent through thesour
e V sj . In the former 
ase, the 
ir
uit elements are evaluated as before, with the node voltage (orderivative, in the 
ase of membrane 
apa
itan
e) taken from the value of V sj at the appropriate time. In thelatter 
ase, the total 
urrent supplied by V sj is simply the sum of all the bran
h 
urrents from the groundedmembrane elements of node j, plus the axial bran
h 
urrents a
ross the appropriate gij with a driving for
egiven by the di�eren
e between the voltage of the neighboring nodes i and V sj . Note that the evaluation ofthe voltage sour
e 
urrent passing through membrane elements of node j is independent of the evalation ofthe new 
ir
uit matrix.34 Results of Adaptive versus Fixed Time Step, and Ideal versusNon-Ideal Voltage ClampI will now present various 
urrent 
lamp and voltage 
lamp simulations to illustrate the methods just de-s
ribed. The 
ell model is based on the Rallpa
k 3 spe
i�
ation (Bhalla et al., 1992), whi
h de�nes a singleunbran
hed 1 mi
ron diameter 
able, 1000 mi
rons long, with a nominally homogenous distribution of the
anoni
al Hodgkin-Huxley INa and IDR squid axon 
hannels. The version used here is de�ned with 11 
om-partments, 
onstru
ted so that the 
ir
uit is symmetri
al (see Appendix H). The 
ompartment on one endis de�ned to be the \soma"; the 
ompartment on the other end is referred to as the \distal 
ompartment".For detailed 
omparisons all plotted simulation results in
lude every time step; normally plotting every othertime step of the integration is suÆ
ient for typi
al studies.The 
urrent 
lamp proto
ol (Figure 7, left) is the response to a somati
 
urrent sour
e of 0.1 nA, applied at10 millise
onds and lasting until the end of the simulation. The initial holding potential for all 
ompartmentsis -65mV, thus there is an initial transient as the 
ell moves towards the true resting potential of -72.7mV.This simulation represents a reasonable test of the adaptive time step algorithm sin
e the a
tivity in the
ir
uit is somewhat dispersed in both spa
e and time.For the voltage 
lamp proto
ol (Figure 7, right), the voltage 
lamp is applied at the soma and all non-somati
 
hannels are dea
tivated for simpli
ity. A somati
 holding potential of -70mV is used, and the
omplete proto
ol 
onsists of four repetitions, ea
h with a 35 millise
ond voltage step (to -70, -50, -30 and-10mV) applied at 10 millise
onds, followed by a return to -70mV. In all 
ases the voltage sour
e has a �xedtransition slope of 1000mV per millise
ond.The �xed time step simulation of the repetitive �ring under 
urrent 
lamp 
onverges as the time step goesfrom 0.01 (5,000 time steps) to 0.005 millise
onds (10,000 time steps) (Figure 8, top). Similar 
onvergen
eo

urs as the maximum allowed voltage error �Vmax goes from 0.05 (1,662 time points, 1,982 total iterations)to 0.005mV (5,151 time points, 5,408 total iterations) in the adaptive time step 
ase, without 
onsideringthe LTE of the parti
le states (Figure 8, bottom).
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Figure 6: Method for splitting a 
ir
uit tree for ideal voltage 
lamp. In the example shown the voltage 
lampednode j is 
onne
ted to three other nodes i, k and l, but the method is the same for an arbitrary number of
onne
tions. Here the original 
ir
uit tree is divided into three new trees (terminated by nodes i, k and l); nodej is evaluated independently of the new 
ir
uit matrix de�ned by the three trees. The variable resistors representmembrane 
ondu
tion elements (leak, 
hannels and synapses) for ea
h node and, impli
itly, the asso
iated voltagesour
es representing the appropriate reversal potentials.
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riteria, depending on the a-priori values given for�Vmax, �xmax and �Cmax. This is illustrated in Figures 10 through 12 in the 
ase of �Vmax and �xmax. These sim-ulations show that there is a smooth and 
onsistent ex
hange with respe
t to whi
h type of LTE determinesthe time steps, as one 
riteria is made tighter than the other.Under voltage 
lamp, the part of the response that is most sensitive to numeri
al stability and a

ura
yissues are probably at the pulse transitions, during whi
h time the voltage sour
e 
urrent is dominated bythe 
apa
itive transient. Under ideal voltage 
lamp, in Figure 13 we 
an see that the adaptive time step 
asefollows the high-resolution �xed time step 
ase (�t = 0:001ms) quite well, without ringing. In the non-idealvoltage 
lamp 
ase, there is a basi
 tradeo� between stability and a

ura
y as a fun
tion of RSour
e. This isillustrated in Figure 14, where, under adaptive time step, a very low value of RSour
e shows os
illations inthe voltage sour
e 
urrent.The stability of the sour
e 
urrent for non-ideal voltage 
lamp is mu
h more sensitive to RSour
e when a�xed time step is used, as seen in Figure 15. When RSour
e = 0:01M
 there is a huge os
illation (amplitudeon the order of 50nA) in the voltage sour
e 
urrent during the pulse transitions. When RSour
e = 0:1M
,there is still a signi�
ant os
illation (amplitude on the order of 2nA). As a pra
ti
al matter, although thevoltage error for the non-ideal voltage 
lamp with RSour
e = 0:1M
 is not very signi�
ant (Figure 14), theseos
illations make it more diÆ
ult to extra
t the 
orre
t peak values of the 
lamp 
urrents.34.1 Dis
ussionThe basi
 performan
e issue with regards to the adaptive time step method is at whi
h point the greaternumber of operations per time step for this method is 
ountered by the smaller number of time steps anditerations for a given a

ura
y as 
ompared to the �xed step method. In the 
urrent 
lamp simulationpresented here the adaptive time was about 2.5 times faster than the �xed time step method. For the (ideal)voltage 
lamp simulation the di�eren
e was about 12 times. While it must be pointed out that there is noformal proof that the tested 
ode is as eÆ
ient as possible (for either method), nevertheless this is a strongindi
ation of the advantage of the adaptive method.In the 
ase of voltage 
lamp, I have shown how an adaptive time step allows a small enough valueof RSour
e (= 0:1M
) for the non-ideal voltage 
lamp so that voltage errors are small, that with a �xedtime step gives transient os
illations that 
an 
ompli
ate data analysis (Figure 15). Nevertheless, the idealvoltage 
lamp formulation is mu
h more robust to this issues, as well as being 
on
eptually simpler. The
omputational overhead of this method is a
tually less (though trivially so) than that for the non-ideal 
ase,sin
e in the ideal 
ase the dimension of the 
ir
uit matrix is redu
ed by one.For both adaptive time step and ideal voltage 
lamp, the programming of the method is straightforward,and should be easily ported to existing 
ode that use the Hines method (e.g. NEURON, GENESIS (Bowerand Beeman, 1994)).
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Figure 7: Basi
 
urrent 
lamp (left) and (ideal) voltage 
lamp (right) proto
ols for the simulations presentedin this paper, run here using an adaptive time step. For the 
urrent 
lamp proto
ol all 
ompartments have ahomogeneous distribution of Hodgkin-Huxley INa and IDR 
hannels (sour
e 
ode given in Appendix H). For thevoltage 
lamp proto
ol only somati
 
hannels are enabled.
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Figure 8: Comparison of 
onvergen
e properties for repetitive �ring during 
urrent 
lamp for di�erent �xed timesteps and adaptive time step error 
riteria. Top: Fixed time step simulations show 
onvergen
e as the time step isredu
ed from 0.01 millise
onds (5,000 time points) to 0.005 millise
onds (10,000 time points). Bottom: Adaptivetime step simulations, with only voltage error 
onsidered, show 
onvergen
e as the maximum allowed voltage LTE�Vmax is redu
ed from 0.05 mV (1,662 time points, 1,982 total iterations) to 0.005 mV (5,151 time points, 5,408total iterations). Note that for both the �xed and adaptive time steps that the simulations are well-behaved (e.g.stable) for all parameter values.
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Figure 9: Detailed 
omparison of third somati
 a
tion potential in repetitive �ring simulations shown in Figure 8,showing the results using various error 
riteria for the adaptive time step. Inset: Time points for adaptive timestep with �Vmax set to 0.05mV.
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0 5 10 15 20 25 30Figure 10: Adaptive time steps as a fun
tion of maximum allowed voltage LTE (�Vmax), for a �xed maximumallowed parti
le LTE, �xmax (= 0:001), for the �rst 30 millise
onds of the 
urrent 
lamp proto
ol des
ribed inFigure 7. Raster plots in this and the following two �gures 
ompare the times of all time steps used in thesimulations, with those time steps that are spe
i�
ally determined by either the voltage error or the gating parti
leerror, as appropriate. In addition, simulation output at the bottom is overlaid for ea
h simulation des
ribed in theraster plots; in all 
ases these plots are indistinguishable.
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Figure 11: Adaptive time steps as a fun
tion of �xmax, for a �xed �Vmax = 0:05mV, for the �rst 30 millise
onds ofthe 
urrent 
lamp proto
ol des
ribed in Figure 7.
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Figure 12: Time steps determined by voltage versus parti
le LTE for the -70mV to -10mV step of the (ideal)voltage 
lamp proto
ol des
ribed in Figure 7. In the top raster plot only voltage LTE �Vmax (= 0:05mV) was usedto determine time steps; as des
ribed in the text, the appropriate nodes for this 
al
ulation in
luded both the
lamped (soma) node and the adja
ent node. This explains how the voltage LTE may be non-zero after the pulsetransitions. In the lower raster plot, gating parti
le LTE (�xmax = 0:001) were also 
onsidered in the determinationof the time step. With the (default) values as given, the parti
le LTE determines all of the time steps subsequentto the pulse transition. Time 
ourse for the soma and distal 
ompartment voltages and the 
lamp 
urrent aresuperimposed in the bottom plots for both error 
riteria, and are essentially identi
al.
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Figure 13: Capa
itive transient 
urrents under ideal voltage 
lamp with �xed and adaptive time step. In theadaptive time step 
ase, breakpoints are used at the start and stop times of ea
h transition of the voltage sour
epulse. The a
tual time steps are shown in ea
h 
ase ex
ept for the �xed step of 0.001 millise
onds. Note thatthe adaptive time step follows very well the transient response for the �xed step of 0.001 millise
onds. The timestep prior to 10.0 millise
onds in the adaptive time step 
ase o

urred at 7.0 millise
onds.
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urrents under ideal and non-ideal voltage 
lamp, for the voltage step from -70 to -10mV,with an adaptive time step. The somati
 voltage shown on the left in the non-ideal 
ase for RSour
e = 0:01M
is indistinguishable from the ideal 
ase; however, this small value gives a small os
illation in the 
urrent re
ordshown on the right.
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Figure 15: Capa
itive transient under ideal and non-ideal voltage 
lamp, both �xed and adaptive time step. Thetra
es at the top are a detailed view of those shown at the right in Figure 14; note again the os
illations seenwhen RSour
e = 0:01M
. In the inset at the top it 
an be seen that the 
urrent error for RSour
e = 0:1M
during the transient is small. The sensitivity of the non-ideal voltage 
lamp 
urrent to RSour
e is mu
h morepronoun
ed in the 
ase of �xed time step integration, as seen in the middle and bottom tra
es.
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les Prob[open state℄ (0-1) Segment/soma voltage Channel 
ondu
tan
eCon
-dep parti
les Prob[open state℄ (0-1) Con
entration Integrator Channel 
ondu
tan
eCon
 Integrator [X℄ in Shells (mM) Some 
urrent in soma or segment Con
-dep parti
lesTable 7: The states of the above elements, along with the node voltages, 
orrespond to the state variables of the
ir
uit.35 Surf-Hippo Integration - Numeri
al MethodsThis se
tion des
ribes the numeri
al details of Surf-Hippo, in parti
ular as related to the methods dis
ussedin Se
tions 32 through 34.35.1 Simulator Representation of Cir
uit Stru
tureSymboli
ally, 
ir
uits are 
omposed of a set of obje
t instan
es, of whi
h there are several di�erent types:nodes, segments, somata, 
hannels, synapses, isour
es, parti
les, 
on
entration integrators, et
. There aremany di�erent interrelationships between obje
ts in a hierar
hi
al fashion, e.g. an instan
e of a 
hannelobje
t referen
es an instan
e of a node obje
t (
orresponding to the ele
tri
al 
ir
uit node that it is atta
hedto), an instan
e of a segment or soma obje
t that it is a part of, instan
es of parti
le and/or 
on
entrationparti
le obje
ts that determine the 
hannel's 
ondu
tan
e, and, indire
tly, instan
es of parti
le nodes whi
h
orrespond to the parti
les' states.Simulation of 
ir
uits is in terms of their nodes, whi
h in
lude the a
tual ele
tri
al nodes (
orrespondingto somata and segments) as well as elements whose states are both dependent on other nodes and in turn
ontrol either bran
h elements of the 
ir
uit or other (non-voltage) nodes. This latter 
lass of elements arelisted in Table 7.35.2 Integration of the Cir
uitFor integrating the 
ir
uit equations, Surf-Hippo uses a variant of the method des
ribed by Hines (1984).Brie
y, the method splits ea
h time step into an impli
it and expli
it phase, and is equivalent to the Crank-Ni
holson method. A major di�eren
e between the method des
ribed in this referen
e, and the Surf-Hippomethod, is that Surf-Hippo uses a variable time step, whose size is adjusted during the integration by anestimate of the linear trun
ation error.35.3 Determination of Time StepThere are three methods for determining the time steps:� Variable (
hoose step based on a LTE 
riteria)� Fixed (
onstant time step is 
hosen before the simulation)� Shadow (time steps are taken from a list of time steps generated by an earlier simulation)The shadowing method is used if the global variable *USE-TIME-LIST* (default NIL) is set and thereare stored time steps whi
h are valid for the 
urrent simulation (e.g. the stop times mat
h). See the se
tionShadowing Time Steps From a Previous Simulation.Otherwise, if *USE-FIXED-STEP* is set (default nil) then time step is �xed with the value set by*USER-STEP* (in millise
onds).Otherwise, the default behavior is an adaptive time step, where the step is adjusted a

ording to anestimate of the linear trun
ation error (LTE). The main parameters that 
ontrol the mapping between LTEand the next time step in
lude:*ABSOLUTE-VOLTAGE-ERROR* -> A reasonable range is 0.01 - 0.1 [mV℄*ABSOLUTE-PARTICLE-ERROR* -> A reasonable range is 0.001 - 0.01
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ally be set to 0.0 without danger [ms℄.*USER-MAX-STEP* -> A reasonable ragne is 0.5 - 5.0, whi
h avoidsskipping over input events [ms℄.These global variables may be set, starting from the Main Menu, via "Overall parameters, load 
ir
uit or�les" ! "Time step and numeri
al integration parameters".The adaptive time step is dis
ussed further in the se
tions Parti
le Errors, Voltage Errors, and LTEEstimation.35.4 BreakpointsBreakpoints are times for whi
h the simulation is for
ed to use (for variable time steps only). In general abreakpoint is 
hosen be
ause there is a priori knowledge of some input whi
h begins or 
hanges abruptlyat that time. This makes less work for the adaptive time step, sin
e without this information the initialstepping would more than likely enounter the input sometime after its initiation, and thus may be for
ed toba
kup if the input was too large at the �rst attempted time point that "saw" the input or the 
hange inthe input. The result (in general) with using breakpoints then is fewer overall iterations and a solution thatis less likely to have "ringing".Float or integer breakpoint times are 
olle
ted prior to the simulation onto the global variable *BREAKPOINT-LIST*(the PICK-TIME-STEP fun
tion uses a version of this information in *MRT-BREAKPOINT-LIST*) with the fol-lowing fun
tions:queue-breakpoint-time time [Fun
tion℄TIME is a breakpoint time in millise
onds.queue-breakpoint-times times [Fun
tion℄TIMES is a list of breakpoint times in millise
onds.queue-pwl-sour
e-break-points value�array period delay [Fun
tion℄This is used for PWL (pulse-based) 
urrent and voltage sour
es.In addition to breakpoints added for any pulse-based sour
e, breakpoints are added (automati
ally) forthe onsets of any autonomous pro
esses, su
h as event-driven synapses.Breakpoints are 
olle
ted automati
ally. If there are additional breakpoints desired, then they must beput into the global variable *USER-BREAKPOINT-LIST*. *USER-BREAKPOINT-LIST* is 
leared whenever abrand new 
ir
uit is read in. For example,(push 15.0 *USER-BREAKPOINT-LIST*)adds the time 15.0 ms to the breakpoints used by the next integration. New breakpoints may also begenerated during a simulation with the evaluation of event-based elements, in
luding axons and voltage-dependent synapses, depending on the value of:*enable-dynami
-breakpoint-generation* t [Variable℄35.5 Time Step Global VariablesNote: To avoid 
onsing, the single and double 
oat globals whi
h tra
k the time steps are stored in arrays:*time-single-float-variables**time-double-float-variables*For example:
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ro *real-time* ()`(aref (the (simple-array single-float *) *time-single-float-variables*) 0))Thus, the value for *REAL-TIME* is referen
ed as (*REAL-TIME*) in the 
ode. This may not be mu
h of awin.During the integration, time is in units of the global variable *MRT*, or the Minimum Resolvable Time.This is done so that internally time may be kept as an integer; thus the value for *MRT* is used to 
onvert
oating times into integers. We should note that the original justi�
ation for the integer representation oftime had to do with implementation in *LISP and 
on
erns about trun
ation error, and it is not 
lear thatthere is a distin
t advantage in the present 
ode.*MRT* is set at the beginning of the simulation:(setf *MRT* (/ (float (max (abs *USER-START-TIME*) (abs *USER-STOP-TIME*)))MAX-INTEGER-TIME))Note that *USER-START-TIME* is almost always equal to 0.The 
onstant MAX-INTEGER-TIME is set as:(def
onstant MAX-INTEGER-TIME (expt 2 (- TIME-WORD-LENGTH 2)))and is the maximum integer used for internal times. From the original notes from Don Webber:"The word length is subtra
ted by 2, one to allow for 2's
omplement math, and one for safety if a simulation runsover the stop time. I don't know if the se
ond one isne
essary."Likewise, the 
onstant TIME-WORD-LENGTH is de�ned as the number of bits in a integer used for internaltimes:(def
onstant TIME-WORD-LENGTH #-
mu 32 #+
mu 28)This was also inherited from Webber's SURF pa
kage. This value is not guarranteed to be 
orre
t for allplatforms. The +
mu �gure of 28 was estimated by �nding the type-of 2N̂, and N=28 was the largest valuethat gave a FIXNUM.Now, we shall review the remaining global variables whi
h are relevant to the time step. In general, onlyvariables that in
lude "USER" in the name should be set by the user.� *USER-START-TIME* (default = 0.0), is the start time of the simulation, in millise
onds.� *START-TIME* (default = 0), is the start time in units of *MRT*.� *USER-STOP-TIME* is the time to end the simulation, in millise
onds.� *INT-USER-STOP-TIME* is the integer part of the time to end the simulation, in millise
onds.� *STOP-TIME* is the stop time in units of *MRT*.� *USER-MAX-STEP* is the maximum time step allowed, in millise
onds. When 0, then MAX-STEP is boundby the simulation duration.� *MAX-STEP* is the maximum time step in units of *MRT*.� *USER-MIN-STEP* is the minimum time step allowed, in millise
onds. When 0, then *MIN-STEP* is setto *MIN-STEP-MRTS.� *MIN-STEP* is the minimum time step in units of *MRT*.� *SIM-TIME-N+1* is the time for the step 
urrently being 
omputed, in units of *MRT*, i.e. t(n+1).� *SIM-TIME-N* is the time for the step already 
omputed, in units of *MRT*, i.e. t(n).
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k, in units of *MRT*, i.e. t(n-1).� *SIM-TIME-N-2* is the time for two steps ba
k, in units of *MRT*, i.e. t(n-2).� *TIME-STEP* is the 
urrent time step, in units of *MRT*.� *LAST-TIME-STEP* is the last time step, in units of *MRT*.� *REAL-TIME* is the time during simulation (mse
), that is the end of the time step (
orresponding tothe predi
tion time of the data).� (*T[N℄*) is the value of *REAL-TIME* for the last time step. This value is used for, among others,axons and voltage dependent synapases who referen
e node voltages at the previous time step.� (*INPUT-TIME*) is the time referen
e for inputs (mse
). When the 
ag *EVALUATE-INPUTS-AT-MIDPOINT*is true, at ea
h time step the 
ir
uit inputs (e.g. sour
es, driven synapses) are evaluated at the midpointof the step - otherwise, the inputs are evaluated for the end of the step (the predi
tion time).� *INTEGER-TIME* is the integer part (
oor) of *REAL-TIME* (mse
).� *FRACTIONAL-TIME* is the fra
tional part of *REAL-TIME* (mse
).� *USER-TIME-STEP* is in units of *MRT*.35.6 Parti
le ErrorsThe fun
tions PARTICLE-ERROR-OK (if *CONSIDER-PARTICLE-ERROR* is T) and CALC-LTE-RATIO 
al
ulatethe LTE from the gating parti
les and node voltages, respe
tively.When *CONSIDER-PARTICLE-ERROR* is T, prior to the evaluation of the gating parti
les (both voltageand 
on
entration dependent) the variable *MAXIMUM-PARTICLE-ERROR-NUMERATOR* is set to 0. As ea
hparti
le is evaluated, *MAXIMUM-PARTICLE-ERROR-NUMERATOR* is set to the numerator of the 2nd order LTE(a di�eren
e between the 
urrent and last �rst derivatives of the parti
le state) when this value ex
eeds the
urrent value of *MAXIMUM-PARTICLE-ERROR-NUMERATOR*. When all the gating parti
les have been evaluated,the value of *MAXIMUM-PARTICLE-ERROR-NUMERATOR* is used to estimate the LTE. The result is then usedto 
al
ulate *PARTICLE-ERROR-MAX-TIME-STEP* (in units of *MRT*). If this value is greater than the 
urrenttime step, a 
ag in DO-TIME-CONTROL (HINES-STEP-OK) is set to NIL.35.7 Voltage ErrorsAfter the node voltages have been 
omputed, CALC-LTE-RATIO returns the ratio of the allowed error (*ABSOLUTE-VOLTAGE-ERROR*)divided by the estimate of max error. Note that in the equations below there are o

asional referen
es tothe node stru
ture slots that hold 
ertain variables.At any given time during the simulation, the node with the largest error must be one that has some inputasso
iated with it, e.g. a sour
e, 
hannel, or synapse. All other nodes are driven by their neighboring nodes,and sin
e the 
apa
itan
e of ea
h node is non-zero, then the response of a node driven by the voltage of aneighbor will always be slower than the neighbor's voltage. Therefore, for estimating the maximum LTE,we need only 
onsider nodes with inputs.Thus at the beginning of the simulation the fun
tion MAKE-NODE-W/ELEMENTS-ARRAY sets the global array*NODE-W/ELEMENTS-ARRAY* to point to all nodes with a
tive (e.g. gbar>0) membrane elements. It is thesenode that are 
onsidered in estimating the maximum LTE in CALC-LTE-RATIO. Note that CALC-LTE-RATIOalso updates the voltage derivative, whi
h is used for the parti
le evaluation. Sin
e all nodes with parti
les(
hannels) are in
luded in *NODE-W/ELEMENTS-ARRAY*, then these derivatives will be available for the propernodes.The in
lusion of all nodes with sour
es may be modi�ed if the global variable *INCLUDE-VSOURCE-NODES-IN-NODE-ERROR-EST*(default nil) is nil. In this 
ase, if there is more than one node in the 
ir
uit the node with the voltage sour
eis *not* in
luded in the error estimation. This 
an avoid very small steps due to a fast voltage sour
e. Inpra
ti
e, this 
an greatly speed up the simulations without e�e
ting the result. However, it is a good idea
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asional run with any voltage sour
e node in
luded in the errorestimation. It is also a good idea to in
lude any voltage sour
e nodes in the error estimation if the sour
eimpedan
e is large.35.8 LTE EstimationThe ele
tri
al 
ir
uit nodes (
orresponding to somas and segments) whi
h are 
onsidered in the LTE estimateare determined by the value of the global variable*lte-node-
riterium* :all [Variable℄Options for this variable in
lude :ALL (default), :SOMAS, :CHANNELS, :SYNAPSES, :VSOURCES, :ISOURCES,:AXONS, or a list of 
ir
uit elements that may or may not in
lude the afore-mentioned keywords. If :ALL,then in
lude all 
ir
uit nodes with externally-driven elements (e.g. sour
es or synapses or 
hannels). If:SOMAS, then in
lude only somas. If :CHANNELS, :SYNAPSES, :VSOURCES, :ISOURCEs or :AXONS,in
lude only those nodes with the appropriate elements.Note that if a driving element on a 
ell element is spe
i�ed via *LTE-NODE-CRITERIUM*, then the asso
i-ated node will only be 
onsidered if the membrane element is enabled (i.e. not blo
ked), and has a non-zeroabsolute 
ondu
tan
e (for synapses and 
hannels).Loop over the 
ir
uit nodes to be 
onsidered in the error estimate, �nding the largest estimated O(dt2̂)error using the following estimate for the se
ond derivative of the voltage. If either the voltage LTE ratiois less than 1, or if the parti
le error to too large (HINES-STEP-OK is NIL) then we redo the last time step.Thus PICK-TIME-STEP will get as its CURRENT-TIME argument:SIM-TIME-N+1 (Last step su

essful)orSIM-TIME-N (Last step unsu

essful)This argument is needed so that PICK-TIME-STEP 
an 
he
k for spe
ial time points (e.g. breakpoints) andother 
onditions whi
h 
onstrain what the next time step 
an be. The basi
 
al
ulation by PICK-TIME-STEPis derived from the se
ond order term in the Taylor expansion of the voltage:NEW-TIME-STEP = PREV-STEP * (expt LTE-RATIO 0.5) * *PICK-TIME-STEP-FUDGEIf we are 
onsidering parti
le error, then NEW-TIME-STEPwill then be limited by *PARTICLE-ERROR-MAX-TIME-STEP*.Note that *PARTICLE-ERROR-MAX-TIME-STEP*was 
al
ulated in PARTICLE-ERROR-OK by essentially the sameformula as above.For non-linear 
ir
uits the fudge fa
tor (*PICK-TIME-STEP-FUDGE*, typi
ally set to 0.8) helps ensure thata redu
ed time step (when LTE-RATIO is less than but 
lose to 1) is small enough so that the next try(iteration) yields new LTEs that are within the error 
riteria. This is be
ause the LTE for a non-linear
ir
uit is not proportional to the time step, and thus the new step may not be small enough. In pra
ti
e,this is a problem with voltage-dependent 
hannels.*PICK-TIME-STEP-FUDGE*must be less than or equal to 1. As an indi
ation that *PICK-TIME-STEP-FUDGE*is not small enough, 
he
k the "Total time points/iterations" �gure at the end of a simulation. If the LTEtime step estimation is working properly, there should be no more than one (extra) iteration per time point.Typi
ally, of 
ourse, there should be many time points in whi
h the initial time step is �ne, and in fa
t isin
reased for the next time point. But as a general rule of thumb, if the number of iterations is more thantwi
e the total time points, then a possiblility is that *PICK-TIME-STEP-FUDGE* is too large.For more detailed tra
ing of the time step iterations, try wat
hing the evolution of the simulation withthe *DEBUG-TIME-TRACE* 
ag enabled.The 
ir
uit matrix integration and the parti
le state integrations des
ribed below take into a

ount thevariable time step, whi
h is an extension of the method des
ribed by Hines 1984.The *USER-MAX-STEP* 
onstraint may be overruled by the evaluation of some element types, in parti
ularthose that are driven by an a-priori (external) waveform. In these 
ases, the global variable *ELEMENT-TIME-STEP-MAXIMUM*is set to a non-NIL step value (in units of *MRT*) that mat
hes the (smallest) time interval of the waveform(s).For example, if EVAL-AXON �nds itself in a spike, then the following form is evaluated:



35 SURF-HIPPO INTEGRATION - NUMERICAL METHODS 174(when (or (and *ELEMENT-TIME-STEP-MAXIMUM*(> *ELEMENT-TIME-STEP-MAXIMUM* waveform-interval))(not *ELEMENT-TIME-STEP-MAXIMUM*))(setf *ELEMENT-TIME-STEP-MAXIMUM* waveform-interval))At the beginning of every time step, *ELEMENT-TIME-STEP-MAXIMUM* is set to NIL. This me
hanism ensuresthat the 
omplete detail of an applied waveform is 
aptured by the simulation.There are two lower limits on the internal (integer) time step - *USER-MIN-STEP* (in units of ms, whennot set to 0) and 2. When the LTE estimate is too large despite using the minimum step, if*PUNT-LTE-WHEN-MIN-STEP-REACHED* = Tthen the simulation will keep going anyway, and the *LTE-WAS-PUNTED* 
ag will be set. Otherwise, thesimulation will stop and a message will appear, e.g. (if *USER-MIN-STEP* = 0):Integration stu
k at time 4.353ms [internal integer time step = 2℄.Try either in
reasing the error 
riteria *ABSOLUTE-VOLTAGE-ERROR*, whi
h is now 0.001,or redu
ing the simulation duration.Or, (if *USER-MIN-STEP* is not = 0):Integration stu
k at 4.353ms, try redu
ing *USER-MIN-STEP*, whi
h now is 0.1ms.Note that the lower limit of 2 is imposed be
ause the evaluation at ea
h time step is done in two stages(whi
h split the time step into two).35.9 Shadowing Time Steps From a Previous SimulationAt the end of every simulation, the time steps (in units of *MRT*) are stored in reverse order in *SIM-REVERSE-TIME-STEP-LIST*.These time steps may be used, or "shadowed", by later simulations to dire
t the integration.Time step shadowing is enabled when the global variable *USE-TIME-LIST* is set and 
ertain 
onditionsare met.By default, shadowed time steps are taken from the list *LAST-SIM-REVERSE-TIME-STEP-LIST* whenthese values are 
onsistent with the 
urrent simulation (primarily, the stop times are the same).If *USE-TIME-LIST* is set, but the time steps in *LAST-SIM-REVERSE-TIME-STEP-LIST*are not appropri-ate, and the stop time of the last simulation and the 
urrent simulation is the same, then *LAST-SIM-REVERSE-TIME-STEP-LIST*is set to the time steps from the last simulation whi
h are subsequently used for the 
urrent simulation. Oth-erwise, time step shadowing is 
an
elled.If *AUTO-REFRESH-LAST-SIM-REVERSE-TIME-LIST* is set then *LAST-SIM-REVERSE-TIME-STEP-LIST*is set to the time steps from the last simulation.While the 
onditions des
ribe above is designed to 
he
k for in
onsisten
ies, it is not a bad idea to verifythat the time steps used are the right ones.Shadowing the time steps from a previous simulation is useful when doing pre
ise quantitative 
om-parisons between simulations using variable time steps. Although tra
es from any two simulations may be
ompared by using the interpolating fun
tion CONVERT-DATA-TIME-LISTS, there are some 
ases in whi
h theinevitable noise generated by this method 
an be irritating (for example when analyzing small di�eren
esbetween two tra
es). See the voltage 
lamp proto
ol in sr
/sys/proto
ols.lisp for an example.35.10 Ordering the MatrixA fundamental 
ontribution of Hines is re
ognizing that tree 
ir
uit topologies (valid for any arbitrary networkof neurons, without gap jun
tions) 
an be ordered su
h that the resulting matrix is almost tri-diagonal withfar o�-diagonals that may be eliminated in one pass. The result is a matrix inversion that is O(n) (see thedes
ription under HINES-SOLVE below).The following des
ription of bran
hes is derived from Hines, 1984: A bran
h is 
omposed of 
onne
tedsegments. The ends of the bran
h are determined by those segments whi
h (at either end of the segment)
onne
t to more than one segment. The bran
hes of a 
ell, and in turn the bran
h segments, are numbered
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h of the tree whi
h is 
onne
ted at one end to the soma. Number the segmentsof that bran
h so that the segment 
onne
ted to the soma is the last segment. The �rst segment of thisbran
h ('trunk') will be 
alled the 'bran
h node'. Note that this bran
h node is not the same thing as a true
ir
uit node (as referen
ed by Surf-Hippo).The soma is also 
onsidered a 'bran
h node'.All bran
hes 
onne
ting to a bran
h node have their segments numbered so that their last segment
onne
ts to this node. Their �rst segments are also 
alled bran
h nodes (as long as other segments are
onne
ted to them), and this segment-numbering pro
ess 
ontinues until all the segments are numbered.The last numbered bran
hes, or 'twigs', all have one end (their �rst segments) un
onne
ted. Ea
h bran
hnode be
omes the 
enter of a Wye network.Continue this pro
edure for all other segments 
onne
ted to the soma.Bran
hes are numbered as follows: Assume that there are N bran
hes. Starting at soma, number all thebran
hes 
onne
ting to the soma starting with N and de
rementing. Continue numbering all the bran
hesthat are 
onne
ted to the previous set of bran
hes, de
rementing the bran
h number. Continue working outon the tree until all the bran
hes are labeled.The two 
ir
uit nodes (proximal and distal) asso
iated with ea
h segment are ordered a

ording to thebran
h number and the number of the atta
hed segment in the proximal dire
tion. Note that sin
e the
ir
uit is a tree, there will only be one su
h segment for ea
h node, whereas there 
an be multiple segmentsatta
hed to a node in the distal dire
tion. For example, if bran
h 33 has 2 segments and bran
h 34 has 3segments, then the nodes would be ordered: ...33-1, 33-2, 34-1, 34-2, 34-3... The soma node has the highestnode index.35.11 Solving the Cir
uitIntegration of the various gating parti
les whi
h 
ontribute produ
t terms to Gelts is done prior to the
omputation of the matrix given in Equation 8 (see dis
ussion of EVAL-ALL-ELEMENTS below).Non-ideal voltage sour
es are handled as a very large membrane 
ondu
tan
e Gelt (whi
h 
orresponds tothe series resistan
e of the ele
trode) in series with a 
ontrolled EGelt (battery) (see also the Se
tion 35.13).Sin
e the axial resistan
es are 
onstant, we 
an �x the o� diagonal terms before the simulation integration,where the gaxials are taken between the nodes implied by the matrix indi
es 
orresponding to the elementsin the *UPPER-DIAG* and *LOWER-DIAG* arrays. These are referred in Equation 8 as the 
ondu
tan
es whi
hmake up the sum Gik , (i 6= k).*upper-diag* and *lower-diag* = (-) G-axials (EVAL-SEGMENT)V-AT-HALF-STEP node stru
ture slots and matrix arrays refer to V (t+ dt=2).As pointed out by Hines, solving for V (t + dt=2) in the impli
it step, and then V (t + dt) expli
itely isse
ond order 
orre
t with respe
t to both dt and the 
ompartment length, and is numeri
ally stable (Cooleyand Dodge, 1966; Joyner et al., 1978).The variable *EVALUATE-INPUTS-AT-MIDPOINT* 
ontrols the relationship between the input timing andthe time step. When true, at ea
h time step the 
ir
uit inputs (e.g. sour
es, driven synapses) are evaluatedat the midpoint of the step - otherwise, the inputs are evaluated for the end of the step (the predi
tion time).35.12 How The Code Does It, Brie
y(This des
ription refers to an earlier release, but is still more or less relevant)The main loop is in DO-TIME-CONTROL. The following fun
tions are 
alled dire
tly from do-time-
ontrolat the start of the integration, and/or from within HINES-STEP during the integration. This is a 
ondenseddes
ription; for the exa
t details please see the referen
ed 
ode.At the beginning of ea
h time step:(INITIALIZE-INTEGRATION)Evaluate the various time step variables:
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e time step.(setf (*delta-t[n℄*) (* *mrt* *time-step*)) ; New time step.(setf (*delta-t-prime[n℄*) (* 0.5 (+ (*delta-t[n-1℄*) (*delta-t[n℄*))))(setf (*delta-t-prime[n℄-squared*) (* (*delta-t-prime[n℄*) (*delta-t-prime[n℄*)))(setf (*half-delta-t-prime[n℄*) (* 0.5 (*DELTA-T-Prime[N℄*)))Now update the 
urrent sour
es.(SET-SOURCES)Voltage sour
es are handled by EVAL-ALL-ELEMENTS.(INIT-ALL-NODES)Clear tri-diag matrix, and initialize all the a

umulator �elds, in
luding (NODE-JACOBIAN ND), (NODE-ALPHA-CHARGE ND) and (NODE-CURRENT ND), i.e.:(setf (node-ja
obian nd) (node-
onst-ja
obian nd)(UPDATE-NODES-V-INDEX)The :PRT-V-INDEX slot in ea
h node is derived by an estimate of the voltage at time (t ) halfway betweenmidpoints of last step and 
urrent step. Depending on size of these two steps, V(t ) is either an interpolationbetween or an extrapolation beyond V(t-n-1) and V(t-n). This estimate is then translated to an index forthe alpha and beta rate 
onstant arrays.(EVAL-ALL-ELEMENTS)Run all the eval routines for the 
ir
uit elements, ea
h of whi
h a

umulates the ja
obian, alpha-
harge,
urrent entries of the appropriate node, and a

umulates the near o�-diagonal entries of the tri-diag matrix,as appropriate. In some 
ases, the order in whi
h di�erent types of 
ir
uit elements is evaluated is important,for example, parti
les must be evaluated before 
hannels. The order is as follows:(EVAL-ALL-AXONS)(EVAL-ALL-CONC-PRTS)(EVAL-ALL-PRTS)(EVAL-ALL-CHS)(EVAL-ALL-SYNS);; Otherwise, 
on
-ints are evaluated out of the inner loop, in DO-TIME-CONTROL.(WHEN *EVAL-CONC-INTS-IN-INNER-LOOP* (EVAL-ALL-CONC-INTS))(EVAL-ALL-SOMAS)(EVAL-ALL-SEGMENTS)(EVAL-ALL-ISOURCES)(EVAL-ALL-VSOURCES)For example in (EVAL-SEGMENT SEG): First, a lo
al variable ALPHA-CAP is set -alpha-
ap <- (* 2/dt (segment-
apa
itan
e seg))For a segment, the target node is the distal node (node-2). The :FLOATS slot of a node holds the variablesthat are 
ontinually updated during the integration (the :FLOATS slot of the various 
ir
uit element stru
-tures holds an array of the variables that are updated by the integration step - this is a kludge to avoidingCONSing):node-2-floats <- (node-floats (segment-node-2 seg))Then, the node's ALPHA-CHARGE, CURRENT, and JACOBIAN slots are updated:
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harge node-2-floats)(+ (node-floats-aref-alpha-
harge node-2-floats)(* (node-floats-aref-voltage-n node-2-floats) alpha-
ap)))(setf (node-floats-aref-
urrent node-2-floats)(- (node-floats-aref-
urrent node-2-floats)(* (segment-g-leak seg) (segment-v-leak seg))))(setf (node-floats-aref-ja
obian node-2-floats)(+ (node-floats-aref-ja
obian node-2-floats)alpha-
ap))The parti
les are evaluated �rst: the parti
le states need to be integrated sin
e the state kineti
s are des
ribedby non-linear �rst-order di�erential equations. However, as pointed out by Hines, there is a non-zero delaybetween a 
hange in a node voltage and the subsequent e�e
t on a node 
hannel 
ondu
tan
e (sin
e thetime 
onstants for the 
hannel kineti
s are always non-zero). Therefore, the parti
le state equations may besolved independently of the 
ir
uit matrix evaluation, with a 
ompletely (dire
t) expli
it method. Parti
lestates are evaluated at (t + dt/2).When all the elements are evaluated, that is their 
ontributions to their asso
iated 
ir
uit nodes havebeen a

umulated, then for ea
h the 
ir
uit node:The node (ALPHA-CHARGE - CURRENT) -> RHS (Right Hand Side [of matrix equation℄)The node JACOBIAN -> diag(EVAL-ALL-NODES)Solve both impli
it and expli
it Hines step: Set the RHS, solve the matrix (impli
it step), update the voltageestimate with the new V-at-half-steps (expli
it step).Impli
it phase:For every ele
tri
al node -(SET-DIAG-RHS-FLOATS) [
alls SET-RHS℄RHS = (2/dt * 
apa
itan
e * V(t)) + (G-elements * E_G-elements)diag = Ja
obian = (2/dt * 
apa
itan
e) + G-axials + G-elements(HINES-SOLVE)Upper triangularization of the matrix is a

omplished by repeated appli
ations of the fun
tion TRIANG. De�nea 'twig' as any bran
h whose distal end is *not* 
onne
ted to an un-TRIANGed bran
h (in
luding no bran
hat all). Now upper triangularize the matrix by doing the following until there are only twigs left: Colle
t theset of all 
urrent twigs, ex
ept any twigs whi
h have already been TRIANGed. Apply TRIANG to the remainingset of twigs, in the order that they appear in the matrix.(TRIANG)Then, for all the somas: Vsomai(t+ dt=2) = RHSi=diagiwhere i refers to the matrix index for somai.Now ba
k substitute to 
omplete the Gaussian elimination.(BKSUB)
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it phase:(EVAL-NODE-FLOATS)Over all nodes: V (t+ dt) = ((2� V (t+ dt=2))� V (t))Now, if using a variable time step, 
he
k the LTE and 
hoose a new time step.(CALC-LTE-RATIO)Get LTE-RATIO = *ABSOLUTE-VOLTAGE-ERROR* / estimated LTE(PICK-TIME-STEP)If the estimated LTE is 0, then CALC-LTE-RATIO returns 0 (instead of in�nity), and PICK-TIME-STEP inter-prets this "spe
ial" value of LTE-RATIO appropriately (
onstraining the new time step by *MAX-STEP*).If LTE �RATIO > 1:0 (or = 0), then advan
e integration, otherwise rerun last step with smaller timestep.If last step was ok, then:(SAVE-DATA)35.13 Ideal Voltage Sour
esRelevant fun
tions in
lude the following. For stripping out ideal voltage sour
e nodes from the bran
heswhi
h form the 
ir
uit matrix:� BUILD-BRANCH-LISTFor evalation of the ideal voltage sour
es:� CHECK-FIXED-VOLTAGE-NODES� GET-VSOURCE-CURRENT� EVAL-FIXED-VOLTAGE-NODESFor setting up the matrix:� REORDER-CIRCUIT� ADD-SEGS-TO-OFF-DIAGS� INITIALIZE-SEG-NODE-JACOBIANS-AND-CURRENTS� INITIALIZE-SOMA-NODE-JACOBIANS-AND-CURRENTSFor 
hoosing the 
ir
uit elements that need to be evaluated:� MAKE-SEGMENT-ARRAY� MAKE-SOMA-ARRAYFor solving the matrix:� TRIANG� BKSUB� HINES-SOLVE35.14 Rallpa
ks - Neuron Simulator Ben
hmarksSurf-Hippo 
ode for running the Rallpa
k ben
hmarks (Bhalla et al., 1992; downloaded 
ode in the rall-pa
k v1.1 dire
tory) may be found in the sr
/rallpa
k dire
tory.



36 INSTALLATION NOTES 17936 Installation NotesThis se
tion des
ribes the basi
 installation of the Surf-Hippo pa
kage, under Unix (or a variant thereof).Here it is assumed that 
sh is the Unix shell. Thus, the "startup" �le referred to below 
an be your .login�le, your .
shr
 �le, or other �le if you use another shell.If you are running Surf-Hippo with the 
omplete Lisp image �le, the following instru
tions are 
omplete.If you will be installing the Lisp and Garnet separately, refer also to Se
tion 37.36.1 File InstallationTo install the Surf-Hippo 
ode, 
reate a dire
tory 
alled "surf-hippo" wherever you want the system to be,and go to it (this will be the Surf-Hippo home dire
tory):unix-prompt> mkdir surf-hippounix-prompt> 
d surf-hippoNow, ftp to either 
ogni.iaf.
nrs-gif.fr or ftp.ai.mit.edu. When asked to log in, use "anonymous", with youremail address as the password:unix-prompt>ftp ftp.ai.mit.eduConne
ted to ftp.ai.mit.edu.220 mini-wheats FTP server (SunOS 4.1) ready.Name (ftp.ai.mit.edu:lyle): anonymous331 Guest login ok, send ident as password.Password:lyle�ai.mit.edu230 Guest login ok, a

ess restri
tions apply.Now, 
hange to the surf-hippo dire
tory at the ftp site and set binary transfer mode:ftp> 
d /pub/surf-hippo250 CWD 
ommand su

essful.ftp> bin200 Type set to I.The �les have all been 
ombined into 
ompressed tar format �les whi
h will 
reate the appropriate sub-dire
tories automati
ally. Sour
e 
ode plus 
omplete exeutable image �les are in tar �les that refer to theSurf-Hippo version, the ma
hine ar
hite
ture, and the operating system. If you are going to use a CMUCLand Garnet that is already installed at your site, just get the sour
e 
ode tar �les, with names like surf-hippo.x.x.tar.Z. Here we will assume that you are installing the entire system, e.g.:ftp> get surf-hippo.2.7e.x86.linux.17f.tgzNow quit FTP:ftp> quitAnd un
ompress and untar the �les:unix-prompt> un
ompress surf-hippo.2.7e.x86.linux.17f.tgzunix-prompt> tar -xvf surf-hippo.x.x.linux.17f.tarThese steps will 
reate subdire
tories will all the sour
es in them. You 
an now delete the original tar �le:unix-prompt> rm *.tar36.2 Basi
 System SetupEdit the "surf-hippo" exe
utable shell s
ript in the Surf-Hippo home dire
tory to spe
ify the lisp exe
utablethat is appropriate for your platform (see also surf-hippo/
mu
l/README). The large image �le is referen
edby this s
ript - make sure that the name (default "image") is 
orre
t in the s
ript. Note that both the Lispexe
utable and the image �le are spe
i�
 to a given ar
hite
ture and operating system.



36 INSTALLATION NOTES 18036.2.1 Editing the startup �leNow edit your shell startup �les - e.g. add the following to your .login or .
shr
 �le (this is for the Lisp):unlimit datasizeunlimit sta
ksizeAdd the pathname of the Surf-Hippo home dire
tory to your startup �le, via the SURFHOME environmentvariable. For example:setenv SURFHOME /usr/lo
al/surf-hippoIf needed, add the pathname of where data will be a

essed (rw) (otherwise the value assigned to SURFHOMEis used):setenv SURFUSERHOME /home/someone-else/surf-hippo-stuffIf you do not set these environment variables, the defaults for both are:~you/surf-hippoIf you want to use the ILISP interfa
e of Ema
s, and ILISP is not already installed on your system, thenin
lude a pointer to the ILISP �les that 
ome with Surf-Hippo, for example:(setq load-path(
ons (expand-file-name "/usr/lo
al/surf-hippo/mis
/ilisp/") load-path))(load "/usr/lo
al/surf-hippo/mis
/ilisp/ilisp.el")Note: when you run CMU Common Lisp, if you get an error similar to:mapin: mmap: Invalid argumentensure_spa
e: Failed to validate 67108864 bytes at 0x01000000then you might have to setenv CMUCL EMPTYFILE in your startup �le, e.g:setenv CMUCL_EMPTYFILE /tmp/emptySee the CMUCL installation instru
tions for more information. Another 
ommon problem is not setting theDISPLAY environment variable properly, giving something like:CMU Common Lisp 17f, running on neuro16Send bug reports and questions to your lo
al CMU CL maintainer, or to
mu
l-bugs�
s.
mu.edu.Loaded subsystems:Python 1.0, target SPARCstation/Sun 4CLOS based on PCL version: September 16 92 PCL (f)CLX X Library MIT R5.02*** Restarting image 
reated with opal:make-image ****** Image 
reation date: Aug 18, 1996, 5:58 AM ***Error in fun
tion XLIB::HOST-ADDRESS: Unknown host ""Debug (type H for help)(XLIB::HOST-ADDRESS "" 0)0℄Apparently, the CLX is not smart enough to 
hoose an appropriate default if DISPLAY is not bound. Makesure it is set from the shell or startup �le, for example:unix-prompt>setenv DISPLAY `/usr/bin/hostname`:0.0unix-prompt>e
ho $DISPLAY
ogni.iaf.
nrs-gif.fr:0.0



36 INSTALLATION NOTES 18136.2.2 Editing the .ema
s �leIf you are going to run under ILISP, and you have downloaded the image, then set up a "surf-hippo" ILISP
ommand in your Ema
s setup �le (e.g. ~/.ema
s) to point to the image:(autoload '
mulisp "ilisp" "Inferior CMU Common LISP." t)(defdiale
t surf-hippo "CMU Common LISP with Surf-Hippo" 
mulisp)(provide 'ilisp-surf-hippo)(autoload 'surf-hippo "ilisp" "Inferior CMU Common LISP with Surf-Hippo." t)(setq surf-hippo-program "/usr/lo
al/surf-hippo/surf-hippo") <----- Editthis line towherever youhave installedSurf-Hippo.If you are running Xema
s, you may have to alter these initializations.36.2.3 Other setup editsIn general, CMUCL GC (garbage 
olle
tion) requires that the swap spa
e be at least twi
e as large as theheap. Also, Lisp starts to thrash when the heap size gets signi�
antly bigger than physi
al memory. Forour ma
hine (96MB), Lisp 
rashes when the heap gets around 41M (assuming that nothing else is running).Edit the following line in mis
/loaders/surf-hippo-loader.lisp a

ording to your setup:(defvar surf::*g
-bytes-retained-warning-threshold* 40e6)Che
k Se
tion 37 and mis
/loaders/surf-hippo-setup.lispand mis
/loaders/surf-hippo-loader.lispfor additional site initializations. Look for the $$$$ CUSTOMIZE $$$$ string. CMU Lisp is industrial strengthbut not bullet-proof. Criti
al results should be saved at reasonable (roughly hourly) intervals.36.3 Up and RunningIn this se
tion, whi
h in some ways re
apitulates Se
tion 2, the Unix environment variable SURFHOME andsurf-hippo/ will be used inter
hangeably as a referen
e to the Surf-Hippo home dire
tory. There are twoways to load Surf-Hippo:� (Fastest) Running the Image - If you have downloaded an image version, or made one yourself, run theSurf-Hippo CMUCL image using either the exe
utable 
ommand:unix-prompt> surf-hippo(assuming that SURFHOME is in the Unix PATH), or from ILISP under Ema
s: Type M-x surf-hippo in Ema
s. Either method loads and exe
utes the Surf-Hippo image �le. On
e Lisp starts, theSurf-Hippo environment is automati
ally initialized; you 
an then enter:lisp-prompt> (surf)to start the menus.� Loading expli
itly into Lisp - Run CMUCL from the Unix shell or from ILISP (to run CMUCL underILisp, type M-x 
mulisp in Ema
s). On
e Lisp has started, you then have to load Garnet and Surf-Hippo expli
itly by loading the �le mis
/loaders/main-loader.lisp. For example:lisp-prompt> (load "/usr/lo
al/surf-hippo/mis
/loaders/main-loader.lisp")or from ILISP, use C-z l on this �le (no need to 
ompile it �rst). If you need to re
ompile the entiresystem, then load the �le $SURFHOME/mis
/loaders/main-
ompiler.lisp into Lisp (start by runningCMUCL, not Surf-Hippo), for example:



36 INSTALLATION NOTES 182lisp-prompt> (load "/usr/lo
al/surf-hippo/mis
/loaders/main-
ompiler.lisp")or from ILISP, use C-z l on this �le [No need to 
ompile it �rst℄. Note that both main-loader.lisp ormain-
ompiler.lisp will load Garnet automati
ally. The main-
ompiler.lisp �le will also transferthe new bin �les to the $SURFHOME/bin/ dire
tories. While 
ompiling the supplied sour
e, allwarnings may be ignored, as far as I know. Note also that the supplied bin �les are for a Spar
. Ifmodi�ed �les are 
ompiled individually (without using main-
ompiler.lisp), then you must transferthe .spar
f (or .fasl) binary �le to the appropriate bin dire
tory so that main-loader.lisp will load inthe next session. Note that any modi�
ations to stru
ture de�nitions or in-line fun
tions require thatthe entire system be re
ompiled for safety. Sometimes the 
ompilation bugs out in the middle for noapparent reason; in this 
ase try restarting Lisp and loading main-
ompiler.lisp again. To save anew image, see the more-installation.do
 �le in the surf-hippo/do
 dire
tory. Note that after you haveinstalled your system, using an image thereafter is faster.Further 
ustomization: If there is a 
ustoms.lisp �le in the Surf-Hippo user home dire
tory (de�neda

ording to either the SURFUSERHOME environment variable or set to the Surf-Hippo home dire
tory),then this �le is loaded on the initial start up. For example, this �le may set 
ertain global variables a

ordingto a user's preferen
es, or load other �les.



37 MORE INSTALLATION NOTES 18337 More Installation NotesSee also Se
tion 29.37.1 Installing New Sour
eFor updating the entire sour
e 
ode to a new version, download the 
ompressed tar �le that will be namedsomething like:surf-hippo.2.7
.tar.ZPut this �le in the surf-hippo home dire
tory, for example:unix-prompt> mv surf-hippo.2.7
.tar.Z /usr/lo
al/surf-hippo/unix-prompt> 
d /usr/lo
al/surf-hippo/unix-prompt> un
ompress surf-hippo.2.7
.tar.Zunix-prompt> tar -xvf surf-hippo.2.7
.tarThese steps will update all subdire
tories. You 
an now delete the original tar �le:unix-prompt> rm *.tarEdit the surf-hippo exe
utable �le in the surf-hippo dire
tory to point to the proper lisp exe
utable (in thesurf-hippo/
mu
l dire
tory).To re
ompile the system, start up Surf-Hippo, and enter the following into the Lisp:lisp-prompt> (setq user::*for
e-all-
ompile* t)Now 
ompile and make an image as des
ribed in the following se
tion.37.2 Image Saving NotesIf you want to save a new image from lisp, use the 
ommandlisp-prompt> (opal:make-image "full-image-pathname")If you want to use the surf-hippo/surf-hippo 
ommand to run the image (as is usually the 
ase if you haveset up things to run from Ema
s with M-x surf-hippo), then the image �lename should be "/usr/lo
al/surf-hippo/imagename", a

ording to what the Surf-Hippo home dire
tory is, and "imagename" is used in thesurf-hippo exe
utable s
ript �le, for example:
d $SURFHOMEexe
 $CMUCLLIB/../bin/lisp "$�" -
ore $SURFHOME/image-eval '(load "messages/initial-message.lisp" :verbose nil)The supplied version of the surf-hippo exe
utable s
ript assumes that the image �le is in $SURFHOME/image.The simplest way to re
ompile all 
hanged �les and make a new image is to simply load:$SURHOME/mis
/loaders/image-makerFor example, with "C-z l /usr/lo
al/surf-hippo/mis
/loaders/image-maker" from the ILISP (*surf-hippo*)bu�er. Note that this will store (overwrite) the resulting image as the �le "image": make sure that the readpermissions are set 
orre
tly for the new �le.If an image for a 
omplete new sour
e is 
ompiled and loaded on top of a previous Surf-Hippo image,then the updated image will be about 10MB larger than before. Until I 
an �gure out how to re
over spa
eallo
ated to redi�ned symbols in the stati
 heap, the only way to avoid this is to make updated sour
e imagesusing a Garnet image to start with. Several versions of these are available at the Surf-Hippo ftp site.
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s automati
ally in
lude ILISP, then something like the following should be in your ema
s setup�le (e.g. /.ema
s) so that the ILISP �les supplied with Surf-Hippo are used:(setq load-path (
ons (expand-file-name "/usr/lo
al/surf-hippo/mis
/ilisp/") load-path))(load "/usr/lo
al/surf-hippo/mis
/ilisp/ilisp.el")If you want to run CMUCL from ILISP, set up an ILISP 
ommand in the ema
s setup �le to point towherever the lisp is:(setq 
mulisp-program "/home/
b
l/lyle/
mu-17
/bin/lisp")Otherwise, for just running Surf-Hippo, then add the following to the ema
s setup �le:(defdiale
t surf-hippo "CMU Common LISP" 
mulisp)(provide 'ilisp-surf-hippo)(autoload 'surf-hippo "ilisp" "Inferior CMU Common LISP with Garnet." t)(setq surf-hippo-program "/usr/lo
al/surf-hippo/surf-hippo")37.4 GARNET NotesIf you are going to install Garnet(not ne
essary for using Surf-Hippo), use the following settings for the loadvariables (edit the garnet-loader.lisp �le as explained in garnetx.x README �le):(unless (boundp '*Garnet-Going-To-Compile*)(defvar load-utils-p T)(defvar load-kr-p T)(defvar load-opal-p T)(defvar load-inter-p T)(defvar load-multifont-p NIL)(defvar load-gesture-p NIL)(defvar load-ps-p T)(defvar load-aggregadgets-p T)(defvar load-aggregraphs-p NIL)(defvar load-debug-p #+garnet-debug T #-garnet-debug NIL)(defvar load-gadgets-p t)(defvar load-demos-p NIL)(defvar load-lapidary-p NIL)(defvar load-gilt-p NIL)(defvar load-
32-p NIL))37.5 UNIX Environment Variables NotesFor running LISP and GARNET expli
itely (not ne
essary for using Surf-Hippo), set the CMUCLLIB andGARNETHOME environment variables in your startup �le (e.g. .login or .
shr
), for example:setenv CMUCLLIB /home/lisp/
mu-18a/lib/setenv GARNETHOME ~lyle/systems/garnet/37.6 Other CustomizationsIn the �le $SURFHOME/mis
/loaders/surf-hippo-loader.lisp the startup fun
tions START (whi
h leaves youtalking to the Lisp interpreter) and SURF (whi
h starts the menus) 
all INIT-SURF-DIRECTORIES whi
hsets the program dire
tories a

ording to the environment variables SURFHOME, possibly SURFUSER-HOME, and as a last resort, by HOME. If you want the Surf-Hippo 
ode and your data (input and output)�les to reside on di�erent dire
tories, edit the following lines (marked with a "->") in surf-hippo-loader.lisp:
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tories ()(in-pa
kage "SURF")(setq *Surfdir*(if (asso
 :SURFHOME lisp::*environment-list*)(
dr (asso
 :SURFHOME lisp::*environment-list*))(
on
atenate 'string (
dr (asso
 :HOME lisp::*environment-list*)) "/surf-hippo")))(surf::
reate-path *surfdir*)(setq *Surf-user-dir*(if (asso
 :SURFUSERHOME lisp::*environment-list*)(
on
atenate 'string (
dr (asso
 :SURFUSERHOME lisp::*environment-list*)) "/")*Surfdir*))(surf::
reate-path *surf-user-dir*)-> (setq surf::*
ir
uit-dire
tory* (
on
atenate 'string *Surf-User-Dir* "
ir
uits/"))(wh::
reate-path surf::*
ir
uit-dire
tory*)-> (setq surf::*data-dire
tory* (
on
atenate 'string *Surf-User-Dir* "data/"))(wh::
reate-path surf::*data-dire
tory*)-> (setq wh::*plot-dire
tory* (
on
atenate 'string *Surf-User-Dir* "plot/"))(wh::
reate-path wh::*plot-dire
tory*)(setq surf::*use-g
-announ
e-window* t) ; problems with save-image version.)For example, you 
ould 
hange:(setq surf::*
ir
uit-dire
tory* (
on
atenate 'string *Surfdir* "
ir
uits/"))to (setq surf::*
ir
uit-dire
tory* "/home/jobobo/surf-hippo-input/my-
ir
uits")37.7 Sour
e Tar File Pro
edureFull sour
e �le updates are made with the following pro
edure, assuming SURFHOME is set 
orre
tly, where"x.x" refers to the version number.unix-prompt> 
d somewhereunix-prompt> sour
e $SURFHOME/mis
/shell-s
ripts/
p-sour
eunix-prompt> tar -
vf ../surf-hippo.x.x.tar .unix-prompt> 
ompress ../surf-hippo.x.x.tarNote that $SURFHOME/mis
/shell-s
ripts/
p-sour
e will remove all �les re
ursively from the pwd (herethe dire
tory "somewhere"). In this example, the 
ompressed tar �le will be written on the parent dire
toryof "somewhere".
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ellaneous Simulation IssuesThis �le des
ribes some of more 
ommon problems you 
an en
ounter with the simulator, in
luding thefollowing topi
s:� Stu
k Windows� Getting Stu
k During the Integration� Some Bugs� X Display NotesAdditional information may be found in Se
tion 39 and Appendix B.38.1 Stu
k WindowsNormally you should avoid destroying a Surf-Hippo window with the X window manager (but see below). Ifyou need to destroy a Surf-Hippo window, and Control "d" doesn't work (see below), then run the fun
tion:* (
lean-windows)whi
h will give a menu for destroying the 
urrent windows. This fun
tion will also free up "stu
k" windowsif there was a bug during the exe
ution of some window menu operations. If this doesn't work, try:* (mdw)whi
h stands for Mouse Destroy Window. A more drasti
 approa
h is:* (
aows)whi
h stands for Clear All Output Windows (but this will not get rid of menus - for this use (MDW)).Manually 
learing menus or other windows may be ne
essary, for example, when there are a
tive menusvisible, but some error has 
aused an exit from the lo
al menu intera
tion loop. The symptom for this is anon-responsive "OK" button: 
li
king here does not remove the menu, and the following message appearsin the Lisp window:WARNING: Intera
tion-Complete 
alled but not inside Wait-Intera
tion-CompleteIt is possible that neither of these te
hniques will work, and you just get more Debugger messages, e.g.:Cli
k or Type on any obje
t or window...in Window #k<KR-DEBUG:*MENU-WIN*-45463>, :LEFTDOWN at x=306, y=84:Warning in Destroy: aggregate '#k<KR-DEBUG:AGGREGATE-45464>' has no parent,is in window '#k<KR-DEBUG:*MENU-WIN*-45463>', but is not that window's:aggregate.Error in fun
tion CHECK-SLOT-TYPE:bad KR type: value *DESTROYED*(was #k<KR-DEBUG:AGGREGATE-45464>),et
. If worse 
omes to worse, go to the Lisp top level, i
onify (and ignore) the bad windows with the Xwindow manager, and keep going. You will have to restart Lisp to get rid of the bad windows.It may also be possible to run into a \destroyed" window in the wrong pla
e, giving a Debugger messagesomething like:Error in fun
tion KR::VALUE-FN:Non-obje
t *DESTROYED*(was #k<KR-DEBUG:PLOT-WINDOW-13654>) in g-value or get-value (slot is :DRAWABLE)In this 
ase, it may be suÆ
ient to restart from the top-level. At worst, you may need to 
lear all the 
urrentwindows with a 
ombination of (CAOWS), (MDW) and destroying with the window manager (if all else fails).



38 PROBLEMS AND MISCELLANEOUS SIMULATION ISSUES 18738.2 Getting Stu
k During the IntegrationIt is possible that the integration will either be very slow, or a
tually get stu
k, depending on 
ir
uitparameters. This should only happen for "unrealisti
" values. As explained in numeri
al.do
, normally amessage will appear if the integration get really stu
k, e.g.:Integration stu
k at time 4.353ms [internal integer time step = 2℄.Try either in
reasing the error 
riteria *ABSOLUTE-VOLTAGE-ERROR*,whi
h is now 0.001, or redu
ing the simulation duration.Otherwise, if you suspe
t that Surf-Hippo has gotten a little 
hoked, try breaking into the Debugger withC-
 C-
, and then seeing what the value of the global variable *REAL-TIME* is. If *REAL-TIME* indi
atessomething is wrong, then restart the Debugger with an ABORT signal (enter 0 or q). You 
an then restartwith (surf). Otherwise, if you want to 
ontinue the simulation, just enter the CONTINUE 
ommand tothe Debugger (1):..Starting transient solutionEnter C-
 C-
 ->Interrupted at #x2016B4.Restarts:0: [CONTINUE℄ Return from BREAK.1: [ABORT ℄ Return to Top-Level.Debug (type H for help)(UNIX::SIGINT-HANDLER #<unavailable-arg>#<unavailable-arg> #.(SYSTEM:INT-SAP #xEFFFECB0))0℄ *real-time*0.10192788 <-- Too small!0℄ q* (surf)** Surf-Hippo: The MIT CBIP Neuron Simulator (Version 2.0) **..38.3 Some BugsREPEAT: CMU Lisp is not bullet-proof. Criti
al results should be saved at reasonable (roughly hourly?)intervals. Here are some bugs:� If you get something similar to the following message:segv_handler: No mapping fault: 0x19a40004segv_handler: Re
ursive no mapping fault (sta
k overflow?)your Lisp session is lost. If this o

urs 
onsistently, please send us a note.� With major Lisp 
rashes (e.g. segmentation violations), killing the Lisp job and restarting may notmake things hunky-dory: you may need to boot the ma
hine. It appears that these 
rashes somehow
orrupt the �le system. Probably there is a less drasti
 te
hnique for re
overy.Sometimes you will get a segmentation violation that will nonetheless put you ba
k into Lisp (viaquitting the Debugger). In this 
ase, it is best to save everything and reload the system.



38 PROBLEMS AND MISCELLANEOUS SIMULATION ISSUES 188� With large simulations, or after long sessions, CMUCL may break into the monitor (typi
ally duringGC), with a message like:GC lossage. No transport fun
tion for obje
t 0x191d36bfLDB monitorldb>You may be able to keep going by typingldb> exitOtherwise, you have to:ldb> quitand restart Lisp.� Sometimes the system bugs during the initial loading, with 
rypti
 error messages su
h as:..Loading Surf-Hippo Roylan
e-Clmath...Argument X is not a REAL: NIL.Restarts:0: [CONTINUE℄ Return NIL from load of #p"roylan
e-
lmath-sr
:roylan
e-
lmath-loader".1: Return NIL from load of "/usr/lo
al/surf-hippo/mis
/loaders/surf-hippo-loader".2: Return NIL from load of "/usr/lo
al/surf-hippo/mis
/loaders/main-loader".3: Return NIL from load of "/usr/lo
al/surf-hippo/mis
/loaders/main-
ompiler".4: [ABORT ℄ Return to Top-Level.Debug (type H for help)(KERNEL:TWO-ARG-> NIL 3045846332)0℄In this 
ase, all that you should do is quit the Debugger and Lisp, and start again.38.4 X Display NotesIf menus or other graphi
s do not display on your s
reen, and there are no error messages printed in theLisp window, then a probable 
ause is that the X display environment variable is pointing somewhere else.Use the printenv Unix 
ommand to 
he
k it:unix-prompt> printenv DISPLAY
ogni.iaf.
nrs-gif.fr:0.0unix-prompt>Contrary to the Garnet README �le, I have had problems (at least under OpenWindows) if the DISPLAYenvironment variable is set to ":0.0" or "unix:0.0". Rather, it appears that the DISPLAY variable mustin
lude the ma
hine name, i.e.:DISPLAY=
ogni.iaf.
nrs-gif.fr:0.0as if the ma
hine running Garnet and the display ma
hine are di�erent. In my .openwin-init �le I have thefollowing lines:
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lients on s
reen 0##SETDISPLAYSCREEN 0xhost `hostname`DISPLAY=`hostname`:0.0



39 FEATURES, NOT BUGS 19039 Features, Not BugsThis se
tion in
ludes various situations whi
h 
an leave you in the Debugger. Some 
ases may indi
ate 
odebugs, while others o

ur by \unreasonable" values in the parameters spe
i�
 to a given simulation. Otherbugs are noted in various se
tions. The topi
s 
overed here in
lude:� Bug �x �les.� Can't QUIT� FLOATING-POINT-OVERFLOW� No response from menus or windows� XLIB Related Errors: DRAWABLE-ERROR� XLIB Related Errors: Window Color Allo
ation (ALLOC-ERROR)� XLIB Related Errors: Window Update� XLIB Related Errors: Fast Mouse Cli
k� GC Announ
e Window� Not Enough Core� Printing Posts
riptTM Files� Zooming Too Far� Bad Plot Parameters� Parameter Error Che
king� System Compiling� Drawing Errors� COMMON-LISP::SUB-SERVE-EVENT Hang39.1 Bug Fix FilesIf there is a bug-�x.lisp �le in the Surf-Hippo user home dire
tory (de�ned a

ording to either the SUR-FUSERHOME environment variable or set to the Surf-Hippo home dire
tory), then this �le is loaded onthe initial start up. Bug �x �les are posted as ne
essary on the Surf-Hippo web site, or sent out to the usermailing list.39.2 Hanging on QUITIf QUIT puts you into the Debugger, try the more robust fun
tion SYSTEM::QUIT.39.3 Arithmeti
 Error During a Simulation FLOATING-POINT-OVERFLOWThe simulator 
annot handle arbitrary 
ir
uit dyami
s - for example, unbounded node voltages. If, be
auseof a mistake (or poor 
hoi
e) for a 
ir
uit parameter or parameters, or be
ause of the 
ir
uit ar
hite
ture,the simulation may halt prematurely with an arithmeti
 error, for example:



39 FEATURES, NOT BUGS 191Starting transient solution...Arithmeti
 error FLOATING-POINT-OVERFLOW signalled.Restarts:0: [ABORT℄ Return to Top-Level.Debug (type H for help)(X86:SIGFPE-HANDLER #<unused-arg> #<unused-arg> #.(SYSTEM:INT-SAP #x3FFFEC68))Sour
e:; File: target:
ode/float-trap.lisp; File has been modified sin
e 
ompilation:; target:
ode/float-trap.lisp; Using form offset instead of 
hara
ter position.(ERROR (QUOTE FLOATING-POINT-OVERFLOW))0℄One way to verify this is to try to see the simulation results so far. Thus, from within the Debugger (to keepuseful 
ontext information 
urrent), try:0℄ (sim-output)A typi
al 
ause of a state variable (su
h as voltage) going wild is a time step that is too large.39.4 Menus and Other Windows Do Not Respond to Mouse, or Do Not RefreshFirst, make sure that the 
aps lo
k key is not ON.Menu intera
tions and window refreshing are sometimes 
ranky. If the interpreter or menus do notrespond, Lisp is probably garbage 
olle
ting ("GC'ing" - a fa
t of life with Lisp). If a new menu or otherwindow is blank, you 
an try to refresh the window by:� Hitting "r" or "R" with the mouse over the window.� Resizing the window with the window manager (e.g. 
li
king on a 
orner and moving it with the mouse).� Using the refresh option of your window manager.39.5 XLIB Related Errors39.5.1 DRAWABLE-ERRORXLIB DRAWABLE-ERRORs arise on
e in a while, for example when Surf-Hippo trys to draw too far beyond the(virtual) window borders. For example:DRAWABLE-ERROR in 
urrent request Code 14.0 [GetGeometry℄ ID #xA0008DRestarts:0: [ABORT℄ Return to Top-Level.Debug (type H for help)(XLIB::X-ERROR XLIB:DRAWABLE-ERROR :DISPLAY#<XLIB:DISPLAY 
ogni.iaf.
nrs-gif.fr:0(X11/NeWS - Sun Mi
rosystems In
. R3000)> :ERROR-KEY ...)0℄



39 FEATURES, NOT BUGS 192For now, the only response is to punt from the Debugger to top level. In some 
ases, it may even be ne
essaryto restart the Lisp if you want to a

ess any graphi
s windows.39.5.2 Window Color Allo
ation Errors (ALLOC-ERROR)Sometimes, you may get the following error in the Lisp window:ALLOC-ERROR in 
urrent request Code 84.0 [Allo
Color℄Restarts:0: [ABORT℄ Return to Top-Level.Debug (type H for help)(XLIB::X-ERROR XLIB:ALLOC-ERROR:DISPLAY#<XLIB:DISPLAY 
ogni.iaf.
nrs-gif.fr:0 (X11/NeWS - Sun Mi
rosystems In
. R3000)>:ERROR-KEY...)0℄ qYou may be able to re
over by typing "q" to the Debugger (as in above example) - otherwise you have toquit Lisp, quit the o�ending appli
ation, and restart Lisp. With regard to problems with 
olors, this errorseems to be related to having too many 
olors allo
ated at on
e. This 
ould happen, for example, when
on
urrently viewing a very multi-
olored image with an appli
ation like \xv" or the like. In our experien
e,Nets
ape is a parti
ularly bad \
olor hog" as far as the Lisp is 
on
erned.In the 
ode that keeps tra
k of 
olors (sr
/gui/
olors.lisp) the idea of the *COLOR-LIBRARY* and*COLOR-FILL-LIBRARY* libraries is twofold: one to save memory and time by having new 
olors or �llingstyles made only when ne
essary, and two to avoid the 
olor allo
ation error when there are too many
olors in the X display. The maximum number of 
olors that 
an eventually be allo
ated is determined bythe variable *COLOR-LIBRARY-RESOLUTION*, whi
h sets the resolution for ea
h of the red blue and green
omponents (0 to 1) of the 
reated 
olors. Thus, if this variable is 0.02 (the default), there 
an be a total of50� 50� 50(= 125000) 
olors in the library. It remains to be seen what is the maximum.Another idea is the use of *COLOR-LIBRARY-MAXIMUM*, whi
h punts the 
reation of new 
olor if thenumber of entries in the 
olor library rea
hes this level.39.5.3 Window Update ErrorsAnother o

asional error may look something like this (typi
ally when you manipulate windows too qui
kly):Asyn
hronous ACCESS-ERROR in request 21132 (last request was 21509)Code 30.0 [ChangeA
tivePointerGrab℄Restarts:0: [CONTINUE℄ Ignore1: [ABORT ℄ Return to Top-Level.Debug (type H for help)(XLIB::READ-ERROR-INPUT#<XLIB:DISPLAY 
ogni.iaf.
nrs-gif.fr:0 (X11/NeWS - Sun Mi
rosystems In
. R3000)>21132#S(XLIB::REPLY-BUFFER:SIZE 32:IBUF8 #(0 10 82 140 0...):NEXT #S(XLIB::REPLY-BUFFER :SIZE 32 :IBUF8 # :NEXT # :DATA-SIZE 32)



39 FEATURES, NOT BUGS 193:DATA-SIZE 32)(NIL))0℄If you have been running from the interpreter (entering 
ommands dire
tly into the Lisp window), then justenter 0 (for Ignore). With lu
k, you 
an re
over from this error gra
efully even while running Surf-Hippo -try to get ba
k to the Main Menu, and hit Quit. You will be in good shape if the quit message appears inthe Lisp window:Do you want to quit LISP? (RETURN for NO, yes/YES for YES):T*Now, you 
an 
ontinue Surf-Hippo from where you left o� simply by entering:* (surf)** Surf-Hippo: The MIT CBIP Neuron Simulator (Version x.x) **39.5.4 Fast Mouse Cli
k ErrorsSometimes 
li
king too fast in a window gets an XLIB error, for example:Asyn
hronous ACCESS-ERROR in request 2697 (last request was 2705)Code 30.0 [ChangeA
tivePointerGrab℄Restarts:0: [CONTINUE℄ Ignore1: [ABORT ℄ Return to Top-Level.Debug (type H for help)(XLIB::READ-ERROR-INPUT#<XLIB:DISPLAY substantia-nigra:0 (X11/NeWS - Sun Mi
rosystems In
. R3000)>2697#S(XLIB::REPLY-BUFFER:SIZE 32:IBUF8 #(0 10 10 137 0...):NEXT #S(XLIB::REPLY-BUFFER :SIZE 32 :IBUF8 # :NEXT # :DATA-SIZE 32):DATA-SIZE 32)(NIL))0℄ q*You 
an generally re
over by just quitting from the Debugger, as shown above. However, if Surf-Hippo isrunning when this happens, get ba
k to the main menu and quit (temporarily) before quitting from theDebugger. Then, restart Surf-Hippo with (surf).39.6 Not Enough Core ErrorIf you try to print or save too many windows at on
e, you may get the following error in the Lisp window:Error in fun
tion #:G27: Could not fork 
hild pro
ess: Not enough 
oreRestarts:



39 FEATURES, NOT BUGS 1940: [ABORT℄ Return to Top-Level.Debug (type H for help)(#:G27)0℄If this happens, just type "q" to get out of the Debugger. One solution is to write out the .ps �le using themenu (i.e. do not sele
t the "Print sele
ted windows now?" option), and then print out the .ps �le from theUNIX shell. In fa
t, if you get this error, the .ps �le is probably residing in the spe
i�ed plot dire
tory, sothat you 
an just referen
e it from the UNIX shell.If this error o

urs after sele
ting some a
tion with the mouse, the windows may be left in a lo
ked state- to unlo
k them:* (unlo
k-windows)NIL*Some notes on this via email:Date: 27 O
t 94 10:07:33-0600From: Ted Dunning <ted�
rl.nmsu.edu>To: lyle�
ogni.iaf.
nrs-gif.frSubje
t: spar
 10, 4.1.3 pat
h re
ommedationsforking lisp 
ould easily require enough spa
e to 
ompletely 
lonelisp (if they use fork instead of vfork). this would make shell-exe
very different from running something from the shell.the other pie
e of information that might help you is the output of/et
/pstat -s when things are not working well.18788k allo
ated + 5572k reserved = 24360k used, 177236k availablegood lu
k!Date: 27 O
t 94 11:57:34-0600From: Ted Dunning <ted�
rl.nmsu.edu>To: lyle�
ogni.iaf.
nrs-gif.frSubje
t: spar
 10, 4.1.3 pat
h re
ommedationsDate: 27 O
t 94 19:32:07-0400From: Lyle Borg-Graham <lyle�
ogni.iaf.
nrs-gif.fr>lisp hasn't 
rashed at the moment, but:lyle�
ogni>/et
/pstat -s63676k allo
ated + 7680k reserved = 71356k used, 32240k available^^^^^this means that forking lisp will probably be impossible (you had 18Mretained, x 2 for new and old help = 36 MB).if you add 100MB more swap you are likely to be ok.wrt the shell-exe
, is there a way to avoid the 
lone with fork anduse vfork (I am no Unix ha
ker!).
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mu
l-bugs39.7 Printing Posts
riptTM Files CrashThere is a problem with the Unix interfa
e that 
an 
ause Lisp to 
rash when printing out more than one.ps �le (using the print windows menu) - the message:Oh no, got a PendingInterrupt while foreign fun
tion 
all wasa
tive.will appear in the Lisp window, and Lisp 
rashes. If this happens, you will have to load everything froms
rat
h. To avoid this problem for now, the "Put all sele
ted windows together?" option in the "WindowPrinting Options" menu is always set when you request the "Print sele
ted windows now?" option, that ismultiple sele
ted windows will be put into a single .ps �le. If you do need to print out several windows,either 
reate the .ps �les via a single 
all to the print windows menu, and then print out these �les from theunix shell (independent of CMU Lisp), or print out ea
h window with su

esive 
alls to the print windowsmenu.The global variable *KILL-MULTIPLE-WINDOW-PRINTING*will prevent Surf-Hippo from printing multipleps �les. The default for this variable is NIL.39.8 Zooming Too FarIf you try to zoom in on too small an area, you may get the following error:Error in fun
tion C::DO-CALL:Condition slot is not bound: CONDITIONS::OPERATIONRestarts:0: [ABORT℄ Return to Top-Level.Debug (type H for help)(SPARC:SIGFPE-HANDLER #<unavailable-arg>#<unavailable-arg>#.(SYSTEM:INT-SAP #xEFFFEC40))0℄Hit q to return to the top-level lisp, and left-mouse over the plot to restore the last zoom view. Try thezoom with a larger area. This bug should be �xed. Also, making the plot window larger (e.g. with thewindow-manager) and replotting (right-mouse) 
an allow a higher zoom.39.9 Bad Plot ParametersIf a plot window is spe
i�ed with bad parameters (e.g. via a menu or by an expli
it fun
tion 
all), then theplot will punt, e.g.:* Plot window FOO-BIPOLAR-23012195: Voltages was spe
ified with bogus Y max (-21.64) min (-21.639078) values.Fatal Error in Fun
tion SETUP-PLOT:NIL** Restarting from Top Level ***



39 FEATURES, NOT BUGS 196and you will be returned to the top level prompt. The o�ending window will be normally by stu
k - it isne
essary to 
all (unsti
k-windows).39.10 Parameter Error Che
kingThere is a minimum of error 
he
king of entered parameters, parti
ularly in the menus. It is up to the userto infer what are reasonable 
onstraints on spe
i�
 parameters (e.g. non-negative, non-zero, negative, et
.).39.11 System CompilingThe system 
ompile and image �le saving s
ript, surf-hippo/mis
/loaders/image-maker.lisp, 
he
ksthe write dates of all the sour
e and 
orresponding binary �les. If Ema
s is used to edit a sour
e �le, andthe temporary edit �le is present, then something like the following bug will o

ur:;;;; Loading #p"/usr/lo
al/surf-hippo/lib/surf-hippo-version.lisp".Argument X is not a REAL: NIL.Restarts:0: [CONTINUE℄ Return NIL from load of "/usr/lo
al/surf-hippo/mis
/loaders/main-loader".1: Return NIL from load of "/usr/lo
al/surf-hippo/mis
/loaders/main-
ompiler".2: Return NIL from load of "/usr/lo
al/surf-hippo/mis
/loaders/image-maker".3: [ABORT ℄ Return to Top-Level.Debug (type H for help)(KERNEL:TWO-ARG-> NIL 3170185043)Sour
e:; File: target:
ode/numbers.lisp; File has been modified sin
e 
ompilation:; target:
ode/numbers.lisp; Using form offset instead of 
hara
ter position.(TWO-ARG-</> TWO-ARG-> > CEILING FLOOR ...)0℄The solution is to remove the o�ending \#...#" �le from one of the surf-hippo/sr
/* dire
tories.39.12 Drawing ErrorsPlotting will 
hoke if there is an attempt to draw something that is far from the designated plotting area ofa given window. This will give an error something like:Type-error in KERNEL::OBJECT-NOT-TYPE-ERROR-HANDLER:-77063 is not of type (SIGNED-BYTE 16)Restarts:0: [ABORT℄ Return to Top-Level.Debug (type H for help)(XLIB:DRAW-RECTANGLE 7 #<XLIB:PIXMAP :0 46137485> #<XLIB:GCONTEXT :0 46137486> -131 ...)[:EXTERNAL℄0℄ qAt least one solution is to exit the Debugger (as above), and destroy the window in question, and then tryto replot.



39 FEATURES, NOT BUGS 19739.13 Hanging on COMMON-LISP::SUB-SERVE-EVENTThere exists a so far un�xed hang on the Linux CMUCL, sometimes (but not always) provoked by heavygraphi
s a
tivity. The �rst symptom is simply no response, but with the ILISP bu�er status indi
ating \run".Breaking into the Debugger (CONTROL-C CONTROL-C), typing \ba
k" and seeing the SUB-SERVE-EVENT
all 
on�rms the diagnosis:(System running but nothing happening...)(Type CONTROL-C CONTROL-C)Interrupted at #x1289E38F.Restarts:0: [CONTINUE℄ Return from BREAK.1: [ABORT ℄ Return to debug level 1.2: Return from BREAK.3: Return to Top-Level.Debug (type H for help)(UNIX::SIGINT-HANDLER #<unused-arg> #<unused-arg> #.(SYSTEM:INT-SAP #x3FFFDD10))Sour
e:; File has been modified sin
e 
ompilation:; target:
ode/signal.lisp; Using form offset instead of 
hara
ter position.(DEFINE-SIGNAL-HANDLER SIGINT-HANDLER "Interrupted" BREAK)0℄℄ ba
k0: (UNIX::SIGINT-HANDLER #<unused-arg>#<unused-arg>#.(SYSTEM:INT-SAP #x3FFFDD10))1: ("Foreign fun
tion 
all land")2: ("Foreign fun
tion 
all land")3: ("Foreign fun
tion 
all land")4: ("Foreign fun
tion 
all land")5: (COMMON-LISP::SUB-SERVE-EVENT NIL 0)6: (SYSTEM:WAIT-UNTIL-FD-USABLE 4 :INPUT NIL)7: (XLIB::BUFFER-INPUT-WAIT-DEFAULT#<XLIB:DISPLAY :0 (The XFree86 Proje
t, In
 R335)>NIL)...Unfortunately, there is no solution as yet but to destroy the ILISP bu�er (!) and start a new Lisp. Obviously,make sure to save anything important from the bu�er before killing it. Hopefully, this hang will be solvedin the not-so-distant future.



A A SHORT INTRODUCTION TO LISP 198A A Short Introdu
tion to LispThis se
tion dis
usses the most elementary features of Lisp, in parti
ular those ne
essary or espe
iallyhelpful for understanding Surf-Hippo. There are numerous referen
es on Lisp, the (non-oÆ
ial) stan-dard being "Common Lisp: the Language, 2nd Edition" (aka "CLtL2"), by Guy L. Steele, Jr., publishedby Digital Press. The web is full of Lisp info - a good pla
e to start is the unoÆ
ial CMUCL website(http://www.
ons.org/
mu
l).In the Surf-Hippo distribution there are also referen
es in the do
/outside do
s dire
tory, in
luding thefaq-lisp and Good-Lisp-Style �les. The faq-lisp �le is espe
ially useful for pointers to various on-line andpublished resour
es.A.1 What is Lisp?Lisp, is one of the older high-level languages, and was originally designed for arti�
ial intelligen
e purposes.However, Lisp is also used for pra
ti
ally every kind of programming domain. For example, Surf-Hippodemonstrates that Lisp 
an be su

essfully applied to a "hard-
ore" numeri
al appli
ation, with essentiallythe same eÆ
ien
y as C or other languages traditionally used in this area. While the fundamental datastru
ture in Lisp is the list (the name "Lisp" 
ame from "LISt Pro
essing"), a 
on
ept whi
h 
an be exploitedquite ni
ely, it's perfe
tly possible to work with arrays and other data stru
tures where these are moreappropriate. In 
ontrast to C, whi
h has a very limited syntax, Lisp has a ri
h number of keywords; oneresult is that you 
an write 
ode that almost looks like real senten
es (see e.g. the LOOP 
onstru
t). Libraries(in the sense used by C) are not required to run a Lisp program and, if you don't need the fastest speed,you 
an use variables without having to de
lare their types.In sum, and in stark 
ontrast to languages like C, it is very easy to write "qui
k and dirty" Lisp 
odethat may suit an appli
ation perfe
tly well, while it is also possible to write stri
ter Lisp 
ode that fullyexploits the pro
essing power of your parti
ular platform.There are several varieties of Lisp - Surf-Hippo uses a high-quality, "industrial-strength", publi
 domainLisp from Carnegie-Mellon University: CMU Common Lisp (or CMUCL). "Common Lisp" means that thisLisp 
orresponds to the ANSI standard for Common Lisp.A.2 The Lisp Command LineThe Lisp 
ommand line is like the UNIX 
ommand line. There's a prompt and you type in Lisp 
ommandsthat will be pro
essed by the interpreter. The default CMUCL prompt is a star (*). This is di�erent from Cwhere you have to 
ompile fun
tions to be able to use them. In Lisp, 
omment lines start with the semi-
olon(;).A.3 Compiling Versus InterpretingA big advantage of Lisp is that you 
an evaluate the same 
ode either dire
tly by entering the 
ode into theinterpreter or by 
ompiling the 
ode running the resulting binary. Of 
ourse, the latter is exe
uted mu
hmore eÆ
iently, but for many tasks simply entering non-
ompiled 
ode works �ne. For example, running abat
h of simulations in the form of a simple loop will run more or less the same speed whether the loop isinterpreted or 
ompiled.Another advantage of Lisp is that if you do want to 
ompile something, this may be done in
rementally- you do not have to re
ompile the entire system.A.4 List Pro
essingData stru
tures in Lisp were originally based on lists, and all expressions (
alled "forms)" that Lisp pro
essesor evaluated (e.g. fun
tion 
alls) are in the list format. So, you 
an have lists of 
oats, lists of strings, listsof stru
tures, et
. The beginning and the end of a list are de�ned by parentheses, and the empty list isequivalent to NIL. A synonym for list is "
ons" (in fa
t the basi
 fun
tion for 
onstru
ting lists is CONS).Some examples:



A A SHORT INTRODUCTION TO LISP 199'() ; The empty list.'(1 2 3 4) ; A list of 4 integers.'("sodium" "potassium") ; A list of two strings.'(1 "aaa" 2 "b") ; A mixed list.You probably noti
ed the quote just before the opening parenthesis. It is there to ensure that the parenthesisis 
onsidered a list and not a fun
tion 
all (see below). A fun
tion 
all itself is written as a list whose �rstelement is the name of the fun
tion. For example, suppose you want to 
al
ulate the square root of 2.0. Thesquare root fun
tion in Lisp is 
alled SQRT. Thus, the expli
it 
ommand that you would type on the Lisp
ommand line, after the star, to 
al
ulate the square root of 2.0 is:* (sqrt 2.0)1.4142135Suppose you want to 
al
ulate the sum of 5.2 and 2.7. The operator for addition is the symbol +, so you willtype:* (+ 5.2 2.7)7.9Now, we 
an understand why it is an error to write a list without the quote at the front. If, for example,one would write (1 2 3), then the Lisp interpreter would take that as a fun
tion 
all for a fun
tion 
alled1, whi
h would produ
e an error:* (1 2 3)In: 1 2(1 2 3)Error: Illegal fun
tion 
all.So, the 
orre
t way to handle the list is to put a quote:* '(1 2 3)(1 2 3)Here, we typed in a list and the Lisp interpreter simply returned the value of the list, be
ause no operationis required in this 
ase.The ba
kquote 
hara
ter is almost the same, ex
ept that any element inside the ba
kquoted list that ispre
eded by a 
omma will be evaluated. Confusing at �rst, but quite useful at times.* (setq a 101) ; Set a variable 
alled A to 101.101* '(1 a b) ; This quoted list is not evaluated.(1 A B)* `(1 a b) ; The ba
kquote also suppresses evaluation.(1 A B)* `(1 ,a b) ; But a 
omma after the ba
kquote 
auses evaluation of the symbol A as(1 101 B) ; the previously set variable.Note that SETQ sets (binds) a variable (symbol) to a value.There are a lot of 
ommands to operate on lists: we 
an merge them, take parts of them, 
opy them,delete parts of them, make lists of lists, apply an operator to all the elements, et
. Here are a few examples:* (append '(1 2) '(3 4)) ; Merge lists(1 2 3 4)* (
ar '(1 2 3 4)) ; Take the first element1* (
dr '(1 2 3 4)) ; Take all elements but the first(2 3 4)* (map 'list 'sqrt '(1.0 2.0 3.0 4.0)) ; Apply the SQRT operator(1.0 1.4142135 1.7320508 2.0)



A A SHORT INTRODUCTION TO LISP 200A.5 NestingLisp allows the nesting of lists. For example:* (+ (sqrt 3.0) (+ 2.0 -3.0) (sin (/ pi 4.0)) (log 5.0))3.0485955001730587d0* (append (
dr '(1 2 3)) (
dr '("a" "b" "
")))(2 3 "b" "
")A.6 All Those Parentheses!If you examine the sour
e 
ode of Surf-Hippo, non-Lispers usually just see a jungle of parentheses. These
ret through this mess is two-fold: �rst, with (a little) experien
e, the parentheses tend to fade into theba
kground. Se
ond, it is mu
h easier to write and evaluate Lisp 
ode in an environment that does most ofthe parentheses work (e.g. ni
e indenting, mat
hing open and 
losed parentheses) for you. All of our workis done under Ema
s (itself written in Lisp) whi
h provides both a Lisp-mode for editing, and the ILISPenvironment for running programs. These sorts of tools are really essential for eÆ
ient travelling in the Lispworld.A.7 Getting Help Dire
tly from Lisp: the DESCRIBE and APROPOS Fun
tionsFor all obje
ts that you 
an manipulate in Lisp, whether variables or fun
tions, you 
an get helpful infor-mation using the DESCRIBE fun
tion. A few examples:* (des
ribe 1)It is a 
omposite number.* (des
ribe '(1 2 3))(1 2 3) is a CONS.* (des
ribe my-ve
tor)#(0.0d0 0.0d0 0.0d0 0.0d0 0.0d0...) is a ve
tor of length 10.It has no fill pointer.Its element type is DOUBLE-FLOAT.This fun
tion is very useful for fun
tions that you have written in the past and you don't really rememberhow you 
all it:* (des
ribe 'my-fun
)MY-FUNC is an internal symbol in the COMMON-LISP-USER pa
kage.Fun
tion: #<Interpreted Fun
tion MY-FUNC {7025501}>Fun
tion arguments:(X Y)Its defined argument types are:(T T)Its result type is:*Its definition is:(LAMBDA (X Y) (BLOCK MY-FUNC #))This example may look terrible, but it gets better after some pra
ti
e. Note that if DESCRIBE was 
alled ona symbol that 
orresponded to a 
ompiled fun
tion, the information would in
lude the sour
e �le for thatfun
tion. The real usefulness of DESCRIBE appears in neural simulations, for example, when you suddenlywant to know a very parti
ular parameter of a very parti
ular synapse somewhere on your 
ell, and thedo
umentation or editing fun
tions in Surf-Hippo do not readily give you the information you want.Another useful fun
tion is APROPOS, whi
h 
an help you �nd referen
es to a given symbol:



A A SHORT INTRODUCTION TO LISP 201* (apropos 'markov)MARKOVSURF-HIPPO::MARKOV-FLOW-ARRAYSSURF-HIPPO::BOGUS-INITIALIZE-MARKOV-PARTICLE (defined)SURF-HIPPO::MARKOV-STATE-VOLTAGE-TRANSITION-FUNCTIONS (defined)SURF-HIPPO::GET-MARKOV-PARTICLE-P-ARRAY (defined)SURF-HIPPO::PLOT-MARKOV-STATESSURF-HIPPO::*MARKOV-TIME-STEP* (defined)...SURF-HIPPO::EVAL-ALL-MARKOV-PARTICLES (defined):MARKOV, value: :MARKOVOf 
ourse, DESCRIBE knows about APROPOS, and vi
a-versa!* (des
ribe 'apropos)APROPOS is an external symbol in the COMMON-LISP pa
kage.Fun
tion: #<Fun
tion APROPOS {1212E99}>Fun
tion arguments:(string &optional pa
kage external-only)Fun
tion do
umentation:Briefly des
ribe all symbols whi
h 
ontain the spe
ified String.If Pa
kage is supplied then only des
ribe symbols present inthat pa
kage. If External-Only is true then only des
ribeexternal symbols in the spe
ified pa
kage.Its de
lared argument types are:((OR BASE-STRING SYMBOL) &OPTIONAL (OR PACKAGE BASE-STRING SYMBOL) T)Its result type is:(VALUES)On Wednesday, 11/2/94 02:57:43 am EST it was 
ompiled from:target:
ode/pa
kage.lispCreated: Tuesday, 11/1/94 01:34:59 pm ESTComment: $Header: pa
kage.lisp,v 1.37 94/10/31 04:11:27 ram Exp $*Likwise,* (apropos 'des
ribe)ILISP:ILISP-DESCRIBE (defined)DEBUG::DESCRIBE-DEBUG-COMMAND (defined)C::DESCRIBE-BYTE-COMPONENT (defined)C::DESCRIBE-TN-USE (defined)...COMMON-LISP::DEFAULT-DESCRIBE (defined)COMMON-LISP::DESCRIBE-FUNCTION-NAME (defined)DESCRIBE (defined) <--- This is the fun
tion we are talking about.A.8 Variables - Spe
ials with Global ValuesYou 
an de�ne variables in Lisp, exa
tly as in other languages. Variables that will be referred to at any timewhile running Lisp (that is, the asso
iated symbol has dynami
 s
ope) are de�ned with the DEFVAR form,and 
alled spe
ial variables. The assignment (or binding) of the symbol for a spe
ial variable to some valuesets the global value of that variable. Despite this distin
tion between the terms spe
ial and global, we will
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ial variables at various times as either spe
ial or global. Thus a global variable is a symbol that
an be referen
ed by any pro
edure later on after its de�nition. Variables that are de�ned and used lo
allywithin a form or program 
onstru
t are des
ribed below. A

ording to good Lisp style, almost all the globalvariables in Surf-Hippo begin, and usually end with, an asterisk.You don't have to de
lare variable types at the time of de�nition; the Lisp interpreter will automati
allyhandle it when you set a spe
i�
 value. For example:* (defvar a)A*Here, we de�ned a variable 
alled A, and the Lisp interpreter lets you know it has been 
reated by e
hoingthe name of the variable. You 
an now set the value of the variable to anything you want, single-
oat, string,list, array:* (setq a 1)1* (setq a "This is a senten
e in a list.")"This is a senten
e in a list."* (setq a '(1 "bb" (3 4 5) "
"))(1 "bb" (3 4 5) "
")Here we bound the same variable symbol to a number, a string, and a mixed list, without 
aring to spe
ifythe type. This illustrates the 
exibility of the language. It makes Lisp a little bit slower in this 
ase, butLisp has other features that allow you, on
e the 
ode is working, to add optimization 
ommands (where of
ourse you spe
ify the types of obje
ts) and to re
over the eÆ
ien
y of languages su
h as C.Note also in the third binding of A the initial quote for the list 
auses all elements of the list to beinterpreted as is, in other words the inner list (3 4 5) is not taken as a fun
tion 
all to the fun
tion "3".Note also that if a SETQ form is applied at top-level to a symbol whi
h has not been de�ned with aDEFVAR, Lisp automati
ally de
lares that symbol to be a spe
ial (global) variable.A.9 LoopsLoops are extremely important in any kind of programming. Lisp provides the powerful LOOP fa
ility, whi
his equivalent to the for( ..; ..; ..) 
onstru
t of C, but mu
h easier to use. In Lisp, you 
an 
ontrolloops by indi
es, you 
an loop over the elements of a list, or loop either as long as or until a 
ondition issatis�ed. You 
an also use the loop to do spe
i�
 a
tions and/or to in
rementally build a result list. Hereare only the most frequently used variations - the �rst example does a parti
ular a
tion at ea
h iteration,the se
ond one builds a list.* (loop for i from 1 to 5 ; Loop 
ontrolled by index i.do (print i))1 ; Prints index varying between 1 and 5.2 ; These are the side effe
ts.345NIL ; Form finally returns NIL be
ause loop defines no return value.* (loop for val in '(1.0 2.0 3.0) ; Loop over a list.
olle
t (sqrt val))(1.0 1.4142135 1.7320508) ; Return value is the 
olle
ted list.
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tionsThe 
onstru
t to de�ne new pro
edures or fun
tions is the DEFUN form. The simplest layout is as follows:(defun fun
tion-name (arg1 arg2 ...)(something-here ...)(something-there ...)...)Lisp fun
tions 
an do two things: perform spe
i�
 a
tions, and return a result. The �rst a
tion is 
alled aside e�e
t; this 
ould be printing 
hara
ters, 
hanging the value of a global variable, de�ning a new array,et
. The return value (or values) of a fun
tion 
an be any Lisp obje
t - a string, a number, a list, evenanother fun
tion. The following example de�nes a fun
tion, 
alled N-RAND, that takes one integer argument,NUM, and returns a list 
ontaining exa
tly NUM random numbers between 0.0 and 1.0. In this exampleno 
he
king is performed on the arguments. The Lisp interpreter answers by e
hoing the name of the newfun
tion:* (defun n-rand (num)(loop for i below num
olle
t (random 1.0))) ; Fun
tion definitionN-RAND* (n-rand 5) ; First 
all(0.008551478 0.5912522 0.4989798 0.18791544 0.28064716)* (n-rand 5) ; Se
ond 
all(0.6307291 0.9514588 0.5839038 0.3242128 0.5458571)In Lisp, it is possible to de�ne fun
tions with optional arguments; that is, the user will be free to provideor not values for some arguments, but the fun
tion will know what default values it should take. This isdone by adding the &OPTIONAL keyword after the obligatory arguments, and before the optional ones. Theargument name may be followed (within a list form) by the default value that the fun
tion should use. Ifthere is no default value spe
i�ed, then the default for that argument is NIL:* (defun foo (x &optional (y 10))(+ x y))FOO* (foo 1) ; Use default value of 10 for argument y11* (foo 1 2) ; Everything is provided3With optional arguments, values supplied in the fun
tion 
all are bound to the fun
tion arguments in theorder in whi
h the optional arguments are listed. Similarly, you 
an have keyword arguments, denoted by&KEY, in whi
h keywords de�ned in the DEFUN pre
ede the appropriate values when the fun
tion is 
alled:* (defun foo (x &key (y 10) (z 20)(+ x y z))FOOIn the following 
ase, the default value of 10 is used for argument y. Note that keywords in fun
tion 
allsin
lude a 
olon - here :z refers to the fun
tion variable z:* (foo 1 :z 0)11In this example everything is provided - note that the keyword args don't have to be in the same order asin the original DEFUN:* (foo 1 :z 100 :y 2)103
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tionsWhile the DEFUN ma
ro 
reates a fun
tion with a name, in some 
ases it may be more 
onvenient to 
reatean unamed fun
tion. For example, this avoids having to de
ide on what a \good" name would be, in otherwords one that isn't or won't be used elsewhere. Unamed fun
tions are 
reated with a lambda-expression,whose syntax is similar to the DEFUN syntax. The parti
le type de�nitions for the 
anoni
al Hodgkin-Huxleysquid axon kineti
s (sr
/parameters/hodgkin-huxley.lisp), for example, use su
h expressions to de�ne theforward and ba
kward rate 
onstants as given in the original Hodgkin and Huxley paper:(parti
le-type-def`(m-hh(
lass . :hh)(alpha-fun
tion . ,#'(lambda (voltage)(de
lare (optimize (speed 3) (spa
e 0)) (single-float voltage))(let ((v-40 (- voltage -40.0)))(/ (* -0.1 v-40)(1- (exp (/ v-40 -10.0)))))))(beta-fun
tion . ,#'(lambda (voltage)(de
lare (optimize (speed 3) (spa
e 0)) (single-float voltage))(* 4.0 (exp (/ (- voltage -65.0) -18.0)))))))Here both expressions have a single voltage argument - note that the main di�eren
e between these expres-sions and the DEFUN syntax is that the keyword LAMBDA repla
es DEFUN, and there is no name that followsLAMBDA. Certainly the above de�nition 
ould have been written by �rst de�ning some named fun
tions, andthen referring to these in the PARTICLE-TYPE-DEF form:(defun m-hh-alpha-fun
tion (voltage)(de
lare (optimize (speed 3) (spa
e 0)) (single-float voltage))(let ((v-40 (- voltage -40.0)))(/ (* -0.1 v-40)(1- (exp (/ v-40 -10.0))))))(defun m-hh-beta-fun
tion (voltage)(de
lare (optimize (speed 3) (spa
e 0)) (single-float voltage))(* 4.0 (exp (/ (- voltage -65.0) -18.0))))(parti
le-type-def`(m-hh-test(
lass . :hh)(alpha-fun
tion . m-hh-alpha-fun
tion)(beta-fun
tion . m-hh-beta-fun
tion)))The \,#'" notation in the above examples is as follows. The leading 
omma says that the following ex-pression should be evaluated - this is ne
essary sin
e the expressions are within a \ba
k-quoted" (e.g.`(m-hh-test ...)) list, as des
ribed earlier. The #' (whi
h Lisp expands into (Fun
tion ...)) is usedwhen the following symbol or form refers to fun
tion, and is ne
essary when using the LAMBDA notation (itis not ne
essary for the referen
es above to 
ompiled fun
tions, su
h as M-HH-ALPHA-FUNCTION).A.12 Stru
turesLisp has built-in stru
tures, as in C. These are de�ned with the DEFSTRUCT keyword, followed by the name ofthe stru
ture, followed by spe
i�
ations for the di�erent �elds (slots) of the stru
ture. The following exampleis taken from Surf-Hippo and shows how the 
urrent sour
e stru
ture is de�ned. The �elds of the stru
ture
an either be de�ned with simply the slot name (e.g. :NAME, :NODE-1 and :NODE-2), de�ned with a defaultvalue (e.g. :CELL-ELEMENT, :ENABLED, :CURRENT-DATA and :RESISTANCE), or de�ned with both a defaultvalue and a type spe
i�
ation (e.g. :CURRENT-DATA and :RESISTANCE):
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t isour
ename(
ell-element nil) ; What the sour
e is a part of (soma or segment)(
urrent-data '() :type list) ; used to store simulation datanode-1node-2(enabled t) ; Sour
e is only 
onsidered when this is T(resistan
e 0.0 :type single-float) ; Series resistan
e, in Mohms.....)Here the DEFSTRUCT form generates a fun
tion for 
reating the stru
ture (MAKE-ISOURCE) as well as a

essorfun
tions to retrieve and 
hange values in the stru
ture (e.g. ISOURCE-NAME, ISOURCE-NODE-1). The variousstru
tures in Surf-Hippo are de�ned in the sys/stru
tures.lisp �le. Typi
ally, you will never need to de�nenew stru
tures in order to use Surf-Hippo, and in fa
t Surf-Hippo is written so that you never have to dealexpli
itely with stru
tures or their asso
iated a

essor fun
tions. In fa
t, in general it is not a good ideato modify the slots of spe
i�
 stru
tures dire
tly (that is using SETF and the appropriate stru
ture a

essorform) sin
e the simulator assumes that a

ess to many stru
ture slots are via spe
i�
 fun
tions whi
h in turntake 
are of ne
essary side e�e
ts. However, sin
e stru
tures are the fundamental data stru
ture of all thethings that de�nes a 
ir
uit, in
luding the spe
i�
 elements and the element types, it is useful to be awareof the stru
ture 
on
ept.A.13 Variables - Lo
al BindingsIt is frequently useful to de�ne temporary, or lo
al, variables within a form (that is, the asso
iated symbolhas lexi
al s
ope). For example, these 
an be variables lo
al to a fun
tion, or may 
ontain a 
ompli
atedmathemati
al expressions 
al
ulated on
e but used many times within a form. The LET form is then used:(let ((var-1 value-1)(var-2 value-2) ; lo
al definition of the variables...)(
ommand-1 var-1 var-2 ...) ; 
ommands in the LET 
onstru
t(
ommand-2 var-1 var-2 ...) ; that use the lo
al variables....) ; end of LET 
onstru
tA lo
al variable exists only within the LET form within whi
h it is de�ned - as soon as the LET is 
omplete,the variable disappears. Note that the symbols whi
h represent arguments in fun
tion de�nitions are lo
alvariables, exa
tly as if they were de�ned in a LET.A.14 Binding Spe
ial Variables Lo
allyThere are a variety of spe
ial (global) variables that Surf-Hippo uses to de�ne various aspe
ts of the simulationenvironment. O

asionally, it may be useful to evaluate a form within whi
h a given global variable is settemporarily to some value, with the original value of the global variable restored on
e the evaluation is done.This temporary binding of a global variable may be done by doing a lo
al binding of the symbol to the desiredvalue using the LET form above. For example, the global variable *OVERLAY-ALL-PLOTS* (see Se
tion 22)determines whether or not old data is kept in plot windows when new data is plotted. Regardless of whatthe 
urrent value of *OVERLAY-ALL-PLOTS* is, we 
an temporarily �x this value with a LET assignment:(let (*OVERLAY-ALL-PLOTS*)(loop for 
urrent from 0.0 to 0.5 by 0.1do (pulse-list *isour
e* (list 10.0 200.0 
urrent))(goferit)(setq *OVERLAY-ALL-PLOTS* t)))



A A SHORT INTRODUCTION TO LISP 206Here, the initial assignment *OVERLAY-ALL-PLOTS* is to NIL. In other words, the same thing would havebeen a

omplished by:(let ((*OVERLAY-ALL-PLOTS* NIL))(loop for 
urrent from 0.0 to 0.5 by 0.1do (pulse-list *isour
e* (list 10.0 200.0 
urrent))(goferit)(setq *OVERLAY-ALL-PLOTS* t)))In either 
ase, the LOOP iterates over values of a lo
al variable CURRENT (from 0 to 0.5, with steps of 0.1), andreferen
es this variable as part of the arguments to the fun
tion PULSE-LIST (see Se
tion 8). Note that thefun
tion LIST returns a list of all of its arguments (you 
ould use a ba
kquote here, remembering to in
ludea 
omma before CURRENT so that it would be treated and evaluated as a variable instead of a symbol). Next,the fun
tion GOFERIT is 
alled (see Se
tions 2 or 17) whi
h runs a simulation. After the simulation is run,*OVERLAY-ALL-PLOTS* is set to T, so that subsequent simulations within the LOOP will overlay their resultsover the earlier output. After the LOOP is �nished, and thus the LET form, the value of *OVERLAY-ALL-PLOTS*will return to whatever it was before the LET.



B ON-LINE DEBUGGER 207B On-line DebuggerCMUCL in
ludes an on-line Debugger whi
h is invoked either automati
ally in 
ase of any error duringexe
ution, or expli
itly by typing the sequen
e C-
 C-
 (entering \Control 
" twi
e). The Debugger in
ludesmany 
ommands (summarized by typing \h"), and it will usually referen
e the sour
e �le for the fun
tionwhere the error o

ured. Note that if the fun
tion was de�ned in the original CMUCL or Garnet sour
e
ode, the �le lo
ation will 
orrespond to the system where these systems were 
ompiled.Exe
ution errors 
an o

ur for a variety of reasons, ranging from parameter type errors, to syntax errorsin your 
ode, to arithmeti
 bugs in Surf-Hippo (never! ;-}). In general, typing \q", \Q" or \0" (the numberzero) to the Debugger will return you to the top-level of the Lisp interpreter. Depending on the error, theDebugger may immediately tell you what the problem is, for example:* (/ 1 0)Arithmeti
 error DIVISION-BY-ZERO signalled.Operation was KERNEL::DIVISION, operands (1 0).Restarts:0: [ABORT℄ Return to Top-Level.Debug (type H for help)(KERNEL::INTEGER-/-INTEGER 1 0)0℄ 0*In other 
ases it is useful (or ne
essary) to ba
k up the Debugger exe
ution sta
k to �nd legible informationindi
ating where the problem lies, by displaying the sta
k with the Debugger's BACKTRACE 
ommand (or\ba
k" for short).If you landed in the Debugger for some una

eptable or unknown reason, please send a bug report.B.1 Debugger ThrashingIn the 
urrent version of CMUCL for Linux, invoking the ba
ktra
e 
ommand takes a while, during whi
htime there is a lot of hard drive thrashing. Hopefully this will be addressed in future releases.B.2 Type Errors and Fun
tion OptimizationConsider a fun
tion in whi
h the argument is de�ned to be a 
ertain type:(defun foo (x)(de
lare (single-float x))(+ x x))If this FOO is then 
alled with an argument that is not a single-
oat, then the Debugger will give 
opiusinformation right o� the bat:* (foo 1)Type-error in KERNEL::OBJECT-NOT-SINGLE-FLOAT-ERROR-HANDLER:1 is not of type SINGLE-FLOATRestarts:0: [ABORT℄ Return to Top-Level.Debug (type H for help)(FOO 1 1)[:EXTERNAL℄
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e:; File: /usr/lo
al/surf-hippo/sr
/sys/foo.lisp(DEFUN FOO (X) (DECLARE (SINGLE-FLOAT X)) (+ X X))0℄On the other hand, if FOO was 
ompiled with various optimization options, for example:(defun foo (x)(de
lare (single-float x)(optimize (safety 0) (speed 3) (spa
e 0)))(+ x x))Then the same bad 
all will give a more opaque Debugger message:* (foo 1)Error in fun
tion UNIX::SIGSEGV-HANDLER: Segmentation Violation at #x483B2170.Restarts:0: [ABORT℄ Return to Top-Level.Debug (type H for help)(UNIX::SIGSEGV-HANDLER #<unused-arg>#<unused-arg>#.(SYSTEM:INT-SAP #x3FFFED08))Sour
e:; File: target:
ode/signal.lisp; File has been modified sin
e 
ompilation:; target:
ode/signal.lisp; Using form offset instead of 
hara
ter position.(DEFINE-SIGNAL-HANDLER SIGSEGV-HANDLER "Segmentation Violation")0℄Ba
ktra
ing up the debugger sta
k is the answer:0℄ ba
k0: (UNIX::SIGSEGV-HANDLER #<unused-arg>#<unused-arg>#.(SYSTEM:INT-SAP #x3FFFED08))1: ("Foreign fun
tion 
all land")2: ("Foreign fun
tion 
all land")3: ("Foreign fun
tion 
all land")4: ("Foreign fun
tion 
all land")5: (FOO #<unused-arg> #<unavailable-arg>)[:EXTERNAL℄6: (EXTENSIONS:INTERACTIVE-EVAL (FOO 1))7: (COMMON-LISP::%TOP-LEVEL)8: ("DEFUN MAKE-IMAGE")9: (COMMON-LISP::RESTART-LISP)0℄Note that the �rst line with intelligible information5: (FOO #<unused-arg> #<unavailable-arg>)[:EXTERNAL℄tells you at least the o�ending fun
tion. Running DESCRIBE gives the information we saw before:
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ribe 'foo)FOO is an internal symbol in the SURF-HIPPO pa
kage.Fun
tion: #<Fun
tion FOO {48761929}>Fun
tion arguments:(x)Its defined argument types are:(SINGLE-FLOAT)Its result type is:SINGLE-FLOATOn Thursday, 9/21/00 03:49:04 pm [-1℄ it was 
ompiled from:/usr/lo
al/surf-hippo/sr
/sys/foo.lispCreated: Thursday, 9/21/00 03:49:02 pm [-1℄0℄If a global variable whose type is de
lared (not always the 
ase) is assigned a value of the wrong type (forexample in a user-de�ned 
ir
uit or s
ript �le), then you will get an error that looks something like this:Error in fun
tion UNIX::SIGBUS-HANDLER: Bus Error at #x71DEEC0.Restarts:0: [ABORT℄ Return to Top-Level.Debug (type H for help)(UNIX::SIGBUS-HANDLER #<unavailable-arg> #<unavailable-arg> #.(SYSTEM:INT-SAP #xEFFFE998))0℄The error may also be 
agged as:Error in fun
tion UNIX::SIGSEGV-HANDLER: Segmentation Violation at #x482C6518.Sometimes it 
an be diÆ
ult to tra
k down the o�ensive value of a global variable with the Debugger, sin
ethe error may be quite buried. The basi
 strategy is to 
he
k all variable values that you have expli
itly
hanged or set in your 
ode against their expe
ted (pro
laimed) types (if any) by using the DESCRIBE fun
tion.For example, the above error would be generated if the Surf-Hippo variable *TEMP-CELCIUS* was set toan integer:* (setq *temp-
el
ius* 100)* 100and then the simulation was run (note that an error is not 
agged by the erroneous SETQ). If we examinethis variable with DESCRIBE:* (des
ribe '*temp-
el
ius*)*TEMP-CELCIUS* is an internal symbol in the SURF-HIPPO pa
kage.It is a spe
ial variable; its value is 100.Its de
lared type is SINGLE-FLOAT.Spe
ial do
umentation:Temperature of the simulation in degrees Cel
ius.*we see that the 
ode expe
ts this to be a single-
oat, and thus will 
hoke if the type of *TEMP-CELCIUS* isotherwise. Note the quote in front of *TEMP-CELCIUS* when it is the argument to the DESCRIBE fun
tion.Otherwise DESCRIBE will evaluate the argument, and then des
ribe the result of the evaluation:* *TEMP-CELCIUS*100* (des
ribe *TEMP-CELCIUS*)It is a 
omposite number.
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tions for All Output WindowsThe following are mouseable and keyable a
tions pertinent to all output windows (plots, histology, and infowindows).� If menus are buried under other windows, hitting CONTROL-q over any info, plot or histology windowwill dei
onify and raise any a
tive menus.� CONTROL-p will prompt for printing the sele
ted window (and the others).� CONTROL-d will destroy the sele
ted window (after prompting for veri�
ation). Avoid destroyingany Surf-Hippo window with the X window manager.� CONTROL-D will destroy the sele
ted window immediately.� CONTROL-a will allow alignment of other windows to the sele
ted window.� r will resurre
t the window.
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tions for Plot WindowsThe following are mouseable and keyable a
tions pertinent to data plotting windows.� R will replot the window.� h, H, CONTROL-h or CONTROL-H will 
reate an Information window with this se
tion in it.� CONTROL-LEFT will give a resizable re
tangle for zooming.� CONTROL-m will 
reate a main plot menu for revising various parameters of the sele
ted plot, in-
luding the font used by the labels. Various menus may be 
alled from this exe
utive menu.� CONTROL-t gives a menu for adding/removing 
omments and titles on windows. Window text 
anbe edited dire
tly on the window by 
li
king the the left mouse on the text to start editing (typi
alema
s 
ommands) and 
li
king with the mouse again to exit.� RIGHT (unzoom) will replot at the last zoom view.� CONTROL-RIGHT (restore) will replot the original view.� CONTROL-s will prompt for saving the sele
ted window to a Lisp �le, allowing easy editing andre-
reation of plots.� CONTROL-SHIFT-LEFT will give a resizable re
tangle for zooming to a new window.� CONTROL-g, when invoked by itself, will toggle a grid on the plot. This may also be spe
i�ed in themain plot menu below. Otherwise, CONTROL-g is the generi
 abort 
ommand. For example, whenzooming or lo
ating a 
ross hair, keyboard keys that invoked the 
ommand may be released whilemoving the mouse as long as the mouse button is pressed. Hitting CONTROL-g before releasing themouse button will abort the operation.� MIDDLE will put a 
ross hair on the window whi
h 
an then be moved around by the mouse, withthe 
urrent 
oordinates updated in the upper right 
orner, in the units of the data in the window. Ifthere was a previous point marked on the window, then the slope between that point and the 
urrentone is also displayed. Normally, when the middle mouse button is released the xy 
oordinates of thelast lo
ation of the 
ross hair is displayed in the units of the window data and the 
ross hair willremain. If CONTROL-g is typed while the middle mouse button is held down, then the 
ross hair willbe removed.*NOTE* If the window has been resized, the 
ross hair result will not be 
orre
t until the window hasbeen replotted/redrawn (e.g. for a data plot, doing a Restore (CONTROL-RIGHT)). If the window isa HISTOLOGY or BUILDER window, then the length between the 
urrent and last points is shown.� CONTROL-MIDDLE will prompt for pla
ing and editing a small 
ross marker, with optional label, atthe any points that were sele
ted with the 
ross hairs. This menu also allows for other editing options,su
h as removing the 
ross if you just want the text. The labels may also be edited dire
tly by 
li
kingthe left mouse button on the text.� CONTROL-f will remove the oldest zoom-re
tangle or 
ross-hair that is visible.� CONTROL-l will remove the newest zoom-re
tangle or 
ross-hair that is visible.� CONTROL-A will remove all the zoom-re
tangles and markers.� CONTROL-b will prompt for drawing a straight line on the plot.� CONTROL-B will prompt for destroying or editing any added straight lines on the plot.� CONTROL-G, will 
reate a menu for a grid on the plot. This menu may also be a

essed via the mainplot menu below.
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omment (e.g. 
ross-hair 
oordinates).� CONTROL-E will erase the data stored in a (standard) plot window, but not the displayed image.This may be useful if there are a lot of plots and memory is getting tight. While a window whose datahas been erased may be printed and examined with the 
ross hairs, zooming, unzooming, restoring, orother res
aling will not be possible.� CONTROL-L will toggle a lo
k on a plotting window whi
h when set prevents that window from beingused for subsequent plots. If CONTROL-L is a
tivated on a non-lo
ked window, then the lo
k is set.If the lo
k is already set, a menu will verify that you want to unlo
k the window.
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tions for Histology WindowsThe following are mouseable and keyable a
tions pertinent to histology windows.� h, H, CONTROL-h or CONTROL-H will 
reate an Information window with this se
tion in it.� LEFT will pi
k the 
losest soma or segment and print the name and xy 
oordinates in the upper lefthand 
orner. For segments, this will identify the segment whose distal node is 
losest to the mouse.� RIGHT will pi
k the 
losest soma and print its name and xy 
oordinates in the upper left hand 
orner.This may be 
onvenient when a soma is surrounded by a lot of segments.� CONTROL-SHIFT-LEFTwill give a menu for various manipulations and examinations of the last somaor segment 
hosen by the LEFT mouse a
tion, if there was one. This menu allows enabling/disablingplotting for all the plottable variables asso
iated with the 
hosen 
ir
uit node, adding/removing various
omponents, su
h as 
hannels, sour
es, and synapses, and output of element and node parameters.Depending on the simulation, other options may also be available.� CONTROL-g is the generi
 abort 
ommand. For example, when zooming or lo
ating a 
ross hair,keyboard keys that invoked the 
ommand may be released while moving the mouse as long as the mousebutton is pressed. Hitting CONTROL-g before releasing the mouse button will abort the operation.� MIDDLE will put a 
ross hair on the window whi
h 
an then be moved around - When the middlemouse button is released the xy 
oordinates of the last lo
ation of the 
ross hair is displayed in mi
rons.If there was a previous point so delineated, or if a 
ell node was pointed out (mouse LEFT), then thelength in mi
rons between the 
urrent and last points is shown. If the window has been resized, the
ross hair result will not be 
orre
t until the window has been redrawn.� CONTROL-MIDDLE will prompt for pla
ing a small 
ross marker, with optional label, at the lastpoint that was sele
ted with the 
ross hairs. This menu also allows for other editing options, su
h asremoving the 
ross if you just want the text. These markers may be removed, or their fonts 
hanged,via the main drawing menu (CONTROL-m), "Edit element graphi
s" option. The labels may also beedited dire
tly by 
li
king the left mouse button on the text.� CONTROL-m will 
reate a menu for revising various parameters of the window, as des
ribed above.� CONTROL-t will prompt for a single line 
omment in that is printed in the lower right 
orner of thewindow. This 
an also be used to erase any 
omment that is in either the lower or upper right 
ornerof the sele
ted window.� CONTROL-e will erase any 
omment in the upper right hand 
orner (e.g. 
ross-hair 
oordinates).� CONTROL-LEFT will give a resizable re
tangle for zooming to a new window.� CONTROL-f will remove the oldest marker (zoom-re
tangle or 
ross-hair) that is visible.� CONTROL-l will remove the latest marker (zoom-re
tangle or 
ross-hair) that is visible.� CONTROL-A will remove all the markers (zoom-re
tangle or 
ross-hair).� CONTROL-L will toggle a lo
k on a histology window whi
h when set prevents that window frombeing used for subsequent output. If CONTROL-L is a
tivated on a non-lo
ked window, then the lo
kis set. If the lo
k is already set, a menu will verify that you want to unlo
k the window.



F TEXT EDIT COMMANDS 214F Text Edit CommandsText entry windows in the menus work similarily to ema
s:� C-a moves the 
ursor to the beginning of the window� C-e moves the 
ursor to the end of the window� C-f moves the 
ursor one step forward� C-b moves the 
ursor one step ba
kward� C-d deletes the 
hara
ter in front of the 
ursor� The "Delete" key deletes the 
hara
ter in ba
k of the 
ursor� "Return" or 
li
k another button (in
luding the "OK") to enter the text



G CHANNEL AND SYNAPSE PARAMETERS 215G Channel and Synapse ParametersThe Surf-Hippo distribution in
ludes a variety of element models taken from the literature. Channel, gatingparti
le and synapse models are listed in Tables 8- ??.
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Referen
e File (*.lisp) ChannelClay, 1998 
lay-98-na NA-CLAY98Deisz, 1996 deisz96 NA-DEISZ96Destexhe et al., 1994 destexhe-3state-na NA-3STATE-GENDestexhe et al., 1994 destexhe-vandenberg-bezanilla NA-DVB94Borg-Graham, 1987 hippo-TR1161 NA1-TR1161NA2-TR1161NA3-TR1161Hodgkin and Huxley, 1952 hodgkin-huxley NA-HH, NA-HH-FITHo�man et al., 1997 ho�man-etal-97 NA-HOFFMAN-ETAL-97Huguenard et al., 1988 huguenard-etal-
hs NA-Y-HUGNA-M-HUGJa�e et al., 1994 ja�e94-
hs NA-JAFFE94Kuo and Bean, 1994 kuo-bean-na NA-KB94NA-KB94-V2Lytton and Sejnowski, 1991 lytton-
hs NA-LYTHuguenard and M
Cormi
k, 1992 m

ormi
k-huguenard-92 NA-MCC-HUGM
Cormi
k and Huguenard, 1992Migliore et al., 1995 migliore95-
hs NA-MIG95Patlak, 1991 patlak-na NA-PATLAK91Sah et al., 1988 sah-fren
h-etal-na NA-SGGNA-SGG-FIG10NA-SGG-POWER-FITNA-SGG-SHIFTED-POWER-FITNA-SGG-MPOWER-FITNA-2-IN-COMP-SGGFren
h and Gage, 1982 NA-FSBG-SLICEFren
h et al., 1990 NA-FSBG-DISSNA-FSBG-MINUS-WINDOWRhodes and Gray, 1994 NA-RHOTraub et al., 1991 traub91-
hs NA-TRB91, NA-TRB91-FITTraub et al., 1994 traub94-
hs NA-TRB94NA-AX-TRB94Vandenberg and Bezanilla, 1991a/b vandenberg-bezanilla NA-VB91Warman et al., 1994 warman94-
hs NA-WDY, NA-WDY-FITworking-fs NA-FSBorg-Graham, 1999 working-hp
 NA-HPCZador, 1993 zador-
hs NA-TZ-CA1-HHTable 8: Parameters of Na+ 
hannel models supplied in the Surf-Hippo distribution. For this table as well asTables 9 - 12, all �les are found in the surf-hippo/sr
/parameters dire
tory, with the extension \.lisp". Channelnames that end in \-FIT" use :HH-EXT 
lass parti
les whose parameters were 
hosen to �t the original 
hannelmodel, as given in the �rst part of the name.
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Referen
e File (*.lisp) ChannelClay, 1998 
lay-98-k K-CLAY98Borg-Graham, 1987 hippo-TR1161 DR-TR1161M-TR1161A-TR1161Hodgkin and Huxley, 1952 hodgkin-huxley DR-HH, DR-HH-FITJa�e et al., 1994 ja�e94-
hs KDR-JAFFE94Sah et al.,1988 k-
hs KDR-SAHStorm, 1990 KDR-STOStorm, 1988 KA-STO88Storm, 1988 KD-STO88Fi
ker and Heinemann, 1992 KTSLOW-FICKER-92KTSLOW-FICKER-92-ACT-POWER2KTSLOW-FICKER-92-ACT-POWER3Lytton and Sejnowski, 1991 lytton-
hs KD-LYTM-LYTA-LYTHuguenard and M
Cormi
k, 1992 m

ormi
k-huguenard-92 KA1-MCC-HUGM
Cormi
k and Huguenard, 1992 KA2-MCC-HUGMigliore et al., 1995 migliore95-
hs KDR-MIG95KA-MIG95KM-MIG95Traub et al., 1991 traub91-
hs KDR-TRB91, KDR-TRB91-FITKA-TRB91, KA-TRB91-FITTraub et al., 1994 traub94-
hs KDR-TRB94KDR-AX-TRB94KA-TRB94Warman et al., 1994 warman94-
hs KM-WDY, KM-WDY-FITKA-WDY, KA-WDY-FITKDR-WDY, KDR-WDY-FITworking-fs KDR-FSBorg-Graham, 1999 working-hp
 KM-HPCKA-HPCKDR-HPCKD-HPCZador, 1993 zador-
hs DR-TZ-CA1-HHTable 9: Parameters of K+ 
hannel models supplied in the Surf-Hippo distribution.
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Referen
e File (*.lisp) ChannelHines, 1992 NEURON-k-
hs KC-ML83Borg-Graham, 1987 hippo-TR1161 C-TR1161AHP-TR1161Ja�e et al., 1994 ja�e94-
hs KC-JAFFE94K�ohler et al., 1996 KAHP-KOHLER-96Huguenard and M
Cormi
k, 1992 m

ormi
k-huguenard-92 KC-MCC-HUGM
Cormi
k and Huguenard, 1992Migliore et al., 1995 migliore95-
hs KAHP-MIG95KC-MIG95Traub et al., 1991 traub91-
hs KC-TRB91, KC-TRB91-FITAHP-TRB91Traub et al., 1994 traub94-
hs AHP-SOMA-TRB94AHP-DENDRITE-TRB94KC-SOMA-TRB94KC-DENDRITE-TRB94Warman et al., 1994 warman94-
hs KCT-WDY, KCT-WDY-FITKAHP-WDYBorg-Graham, 1999 working-hp
 KAHP-HPCKCT-HPCYamada et al., 1989 yamada-ko
h-adams-
hs KC-YKA89Table 10: Parameters of Ca2+-dep K+ 
hannel models supplied in the Surf-Hippo distribution.

Referen
e File (*.lisp) ChannelBorg-Graham, 1987 hippo-TR1161 CA-TR1161Ja�e et al., 1994 ja�e94-
hs CA-T-JAFFE, CA-T-JAFFE-FITCA-N-JAFFE, CA-N-JAFFE-FITCA-L-JAFFE, CA-L-JAFFE-FITLytton and Sejnowski, 1991 lytton-
hs CAT-LYTCAN-LYTHuguenard and M
Cormi
k, 1992 m

ormi
k-huguenard-92 CAT-MCC-HUGM
Cormi
k and Huguenard, 1992Migliore et al., 1995 migliore95-
hs CA-L-MIG95CA-N-MIG95CA-T-MIG95Traub et al., 1991 traub91-
hs CA-TRB91, CA-TRB91-FITTraub et al., 1994 traub94-
hs CA-SOMA-TRB94CA-DENDRITE-TRB94Warman et al., 1994 warman94-
hs CA-WDY, CA-WDY-FITBorg-Graham, 1999 working-hp
 CA-L-HPCCA-T-HPCCA-N-HPCTable 11: Parameters of Ca2+ 
hannel models supplied in the Surf-Hippo distribution.
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Referen
e File (*.lisp) ChannelBarnes and Hille, 1989 barnes-hille-
one-
hs H-BARNES-HILLE-89Borg-Graham, 1987 hippo-TR1161 Q-TR1161Huguenard and M
Cormi
k, 1992 m

ormi
k-huguenard-92 H-MCC-HUG, H-MCC-HUG-FITM
Cormi
k and Huguenard, 1992Madison et al., 1986 madison-etal-86 KCLV-MAD86Borg-Graham, 1999 working-hp
 H-HPCTable 12: Parameters of other 
hannel models supplied in the Surf-Hippo distribution.
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k Sour
e CodeIn this se
tion we shall illustrate the Surf-Hippo sour
e 
ode used in some of the presented simulations inSe
tion 31. This 
ode a) de�nes the Hodgkin-Huxley INa and IDR 
hannel types, b) de�nes the soma/short-
able Rallpa
k 3 stru
ture, and 
) sets up and runs the 
urrent 
lamp simulation illustrated on the left inFigure 7.The parameters for the various element types - 
ell types, 
hannel types, synapse types, parti
le types,
on
entration dependent parti
le types, 
on
entration integrator types, axon types, pump types, and bu�ertypes - are referen
ed from parameter libraries spe
i�
 to ea
h type. Adding (and updating) a new entry ofa given element type to the appropriate library is done with the Type-def ma
ros, e.g. CHANNEL-TYPE-DEF,CONC-INT-TYPE-DEF, and so on. The body of ea
h Type-def ma
ro is a quoted list whose �rst element is thename (typi
ally a symbol) of an element type, followed by an asso
iation list of parameters spe
i�
 to thatsort of element type. The names of the element types given by the Type-defs may then be referen
ed in thesour
e 
ode.We start with the de�nitions for the Hodgkin-Huxley (Hodgkin and Huxley, 1952) INa and IDR 
hanneltypes (respe
tively, NA-HH and DR-HH). These de�nitions are made with the CHANNEL-TYPE-DEF ma
ro:(
hannel-type-def'(NA-HH(gbar-density . 1200) ; pS/um2(e-rev . 50) ; mV(v-parti
les . ((M-HH 3) (H-HH 1))))) ; There are 3 M-HH parti
les and 1 H-HH parti
le.(
hannel-type-def'(DR-HH(gbar-density . 360) ; pS/um2(e-rev . -77) ; mV(v-parti
les . ((N-HH 4))))) ; There are 4 N-HH parti
les.These 
hannel type de�nitions referen
e various parti
le types, in
luding M-HH, H-HH and N-HH, whose de�-nitions are made using the PARTICLE-TYPE-DEF ma
ro:(parti
le-type-def`(M-HH(
lass . :HH) ; This parti
le is of the 
anoni
al HH form.(alpha-fun
tion . M-HH-ALPHA) ; The forward rate 
onstant is given by this fun
tion.(beta-fun
tion . M-HH-BETA))) ; The ba
kward rate 
onstant is given by this fun
tion.(parti
le-type-def`(H-HH(
lass . :HH)(alpha-fun
tion . H-HH-ALPHA)(beta-fun
tion . H-HH-BETA)))(parti
le-type-def`(N-HH(
lass . :HH)(alpha-fun
tion . N-HH-ALPHA)(beta-fun
tion . N-HH-BETA)))The parti
le type de�nitions, in turn, referen
e various forward and ba
kward rate fun
tions (e.g. M-HH-ALPHAand M-HH-BETA, respe
tively, for the M-HH parti
le type). In the de�nitions for these fun
tions, the voltage



H EXAMPLE: RALLPACK SOURCE CODE 221argument is assumed to be in mV, and the fun
tions return rates in 1/ms:(defun m-hh-alpha (voltage)(/ (* -0.1 (- voltage -40))(1- (exp (/ (- voltage -40) -10)))))Given the pre�x notation of Lisp, this expression is equivalent to:�m(V ) = �0:1(V ��40)1� exp(V��40�10 )(defun m-hh-beta (voltage)(* 4 (exp (/ (- voltage -65) -18))))(defun h-hh-alpha (voltage)(* 0.07 (exp (/ (- voltage -65) -20))))(defun h-hh-beta (voltage)(/ 1.0 (1+ (exp (/ (- voltage -35) -10)))))(defun n-hh-alpha (voltage)(/ (* -0.01 (- voltage -55))(1- (exp (/ (- voltage -55) -10)))))(defun n-hh-beta (voltage)(* 0.125 (exp (/ (- voltage -65) -80))))The ma
ro CELL-TYPE-DEF de�nes the parameters for the 
ell type HH-AXON:(
ell-type-def'(HH-AXON(rm . 40000) ; ohms 
m2(ri . 100) ; ohms 
m(
m . 1) ; uF/
m2(v-leak . -65))) ; mVNext we de�ne a fun
tion whi
h 
reates a soma/short-
able 
ell with 11 total 
ompartments (1 soma and 10segments), and adds INa and IDR to all 
ompartments.In Surf-Hippo the ele
tri
al model for a segment is single-ended approximation to the 
able se
tion, asfollows: g-axialProx o---/\/\/\-----+---o Distal|memb-elements|GndIn addition, the soma 
ir
uit is simply a parallel RC. However, the Rallpa
k 3 spe
i�
ation assumes 
enter-tapped approximation to 
able se
tions for the entire 
ir
uit, whi
h implies that the end nodes are half-versions of the remaining nodes. With a total length of 1000 mi
rons and 9 middle 
ompartments, in the



H EXAMPLE: RALLPACK SOURCE CODE 222Surf-Hippo model this is a

omplished by de�ning end 
ompartments (soma and distal segment) with anequivalent 
ylinderi
al length of 50 mi
rons. To maintain symmetry, we adjust the axial resistan
e of thedistal segment by a fa
tor of 2:



H EXAMPLE: RALLPACK SOURCE CODE 223(defun rallpa
k-3-11 ()(let ((distal-segment(segment-
hain ; Create a 
hain of segments originating from the soma.; SEGMENT-CHAIN returns the last segment, whi
h we assign to; a lo
al variable DISTAL-SEGMENT for use below.(
reate-soma ; This makes the soma.(
reate-
ell 'AXON :
ell-type 'HH-AXON) ; This makes the 
ell.(sphere-diameter-from-area (* 50 pi 1))) ; Diameter => area equals 1/2 segment area.NIL ; Optional base name for segments - not used here.10 ; Number of segments.100 1))) ; Default length and diameter of ea
h segment in mi
rons.(element-length distal-segment 50) ; Shorten the distal segment.(element-parameter distal-segment 'RI-COEFFICIENT 2) ; Double its effe
tive Ri.;; Add the Hodgkin-Huxley Na and DR 
hannels to the soma and all the segments, as returned;; from the fun
tion CELL-ELEMENTS.(
reate-element (
ell-elements) 'NA-HH 'DR-HH)))Now load the 
ir
uit de�nition:(topload 'RALLPACK-3-11)We will now set up the details of a 
urrent 
lamp simulation. First, make sure that the variables de�ningthe integration method and data plot resolution are set (these are the default values):(setq *use-fixed-step* nil ; Enable adaptive time step.*absolute-voltage-error* 0.05 ; mV*absolute-parti
le-error* 0.001 ; dimensionless*user-max-step* 5.0 ; ms*user-min-step* 0.0 ; ms*pi
k-time-step-fudge* 0.8 ; dimensionless*save-data-step* 2) ; Save every other time point.Note that *ABSOLUTE-VOLTAGE-ERROR* and *ABSOLUTE-PARTICLE-ERROR* 
orrespond to �Vmax and �xmax,respe
tively, and *PICK-TIME-STEP-FUDGE* 
orresponds to "�t (Se
tion 32).Now add a 
urrent sour
e to *SOMA* (this global variable referen
es the last 
reated soma in the 
ir
uit):(add-isour
e *SOMA*)The obje
t-oriented nature of this 
ode allows 
ir
uit elements to be referen
ed in a variety of ways. Forexample, given the above example, we 
ould referen
e the soma by its name:(add-isour
e "AXON-soma")We now add a 0.1nA pulse from 10 to 50 millise
onds to the 
urrent sour
e we just 
reated, referen
ed bythe global variable *ISOURCE*:



H EXAMPLE: RALLPACK SOURCE CODE 224(pulse-list *ISOURCE* '(10 50 0.1))Now enable element plotting:(enable-element-plot *ISOURCE*) ; Default for 
urrent sour
es is the 
urrent.(enable-element-plot *SOMA*) ; Default for somas is the voltage.(enable-element-plot (distal-tips)) ; Default for segments is the voltage.The fun
tion DISTAL-TIPS returns a list of the distal segments in the 
ir
uit - in this 
ase this gives the samesegment as referen
ed by the lo
al variable DISTAL-SEGMENT in the RALLPACK-3-11 fun
tion de�nition.Set the simulation time (millise
onds):(setq *USER-STOP-TIME* 50.0)Finally, run the simulation:(goferit)Note that other than the setup of the 
ell anatomy, all of the steps in this 
ode example may be done fromthe menus and point-&-
li
k histology graphi
s.
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